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1 Introduction

With the World Wide Web we have access to a seemingly unlimited amount of data. Data is referred to
as the new gold or to be even more valuable because you can reuse the same data again [3]. The problem
is that the data is often unstructured, difficult to merge when having multiple sources and it is hard to do
more complex queries instead of doing text searches. The Resource Description Framework (RDF) tackles
those issues by providing a framework to structure and link data on the internet. It is designed represent
information in a machine understandable way so searching queries with a semantic meaning is now possible.

Uncertainty in RDF data can have many reasons such as imprecise measurements, incomplete knowledge
or conflicting information. When uncertainty is not represented or handled accordingly while working with
the data these uncertainties can negatively impact the quality of data, the results of search queries and the
trustworthiness of semantic web applications. Currently there is no clear standard how to model uncer-
tainty (section 2) in RDF or how to handle them during reasoning (section 3). This paper shows multiple
approaches for reasoning in uncertain RDF graphs and tests if they can be used for ancient coinage use
cases.

2 Motivation

When dealing with archaeological artefacts like ancient coinage there are multiple sources for uncertainty
[15]. There are corroded coins like figure 1 that experts have trouble classifying. Even if a coin is classified
with high confidence to a coin type those coin types could also have vaguely defined time periods for
the mint date which adds another layer of uncertainty. There is also the case that the researchers have
different opinions when classifying the coin that adds inconsistencies to the graph. The W3C classifies
uncertainty in Ambiguity, Empirical, Vagueness, Inconsistency and Incompleteness [17]. Using the W3C
uncertainty types those uncertainties when dealing with ancient coinage can be categorized as vagueness
(vaguely defined time periods), incompleteness (coins can’t be classified) and inconsistency (conflicting
classification from experts). To tackle this there is research how to model uncertainties in RDF ontologies
[15, 11, 9] and how to reason in uncertain RDF graphs [2, 6, 7, 16]. In this paper we will define several use
cases, model them as RDF graphs and determine whether the current approaches are suitable for ancient
coinage.

Figure 1: Coin with corrosion. From [15].
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Figure 2: Example for similar coin types from [8]. ric.1(2).aug.4A on the top and ric.1(2).aug.5 on
the bottom. The legend on the top left is "IMP CAESAR AVGVST" and on the bottom left
"IMP CAESAR AVGVSTV".

2.1 Use Case 1: Coin Type and Coin Similarity

In this use case the goal is to find similar coins or coin types like the example shown in figure 2. This
could be done by domain experts that look at the coin types and define a similarity value between 0 and
1 or using machine learning models. Computer vision algorithms could be used to cluster the coin images
or NLP could help by parsing the coin descriptions to RDF statements which are then used for reasoning
[14]. There could be multiple models that are used to calculate coin type similarity.
For example, there is a coin that is most likely coin type ric.1(2).aug.4A but you only know it with a
certainty level of 0.8. Another coin is classified as ric.1(2).aug.5 with a confidence of 0.7. Coin type
ric.1(2).aug.4A looks similar to coin type ric.1(2).aug.5 with a factor 0.9. How likely is it for the
coin to be coin type ric.1(2).aug.5 instead of ric.1(2).aug.4A, how similar are those two coins and
how to deal with multiple similarity values between coin types when reasoning in the RDF graph? Another
question is how to deal with corroded coins if you can’t classify them to a single coin type but to a group
of similar types.

2.2 Use Case 2: Issuer/Depicted Person

Due to corrosion the issuer or depicted person on a coin can be hard to determine. Thats why the AFE-Web
tool [1] allows alternative issuers and depicted person (Issuing for in AFE) which is shown in figure 3.
Additionally, there is check box that states whether the person adding the coin is sure that the right issuer
or depicted person is selected or at least in the given alternatives. From domain experts AFE has a list of
issuers with depicted persons they had on their coins. The question is how to deal with the uncertainty
regarding alternatives, the uncertain check box and issuers that don’t match the depicted persons from
the domain knowledge.

2.3 Use Case 3: Closing date for a Hoard

Determining the closing date for a coin hoard can difficult when dealing with multiple coin types and coins
that are hard to classify. For example, one coin is poorly preserved and therefore hard to classify. The
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Figure 3: Uncertainty representation in AFE.

expert classifies it as cn type 210471 with a confidence of 0.6. The second coin, on the other hand, is
classified as cn type 211422 with a high confidence around 1, but the date range for this coin type is
vague. The last coin is also corroded and thus only classified with a low confidence of 0.55 to cn type
208853 but also has a vague time range. The question of this use case is how to deal with the dates from
poorly preserved coins and vaguely dated coin types like you can see in table 1 to determine the closing
date of the find.

Coin Type Date Confidence
cn type 20885 c. 85-70 BC 0.55
cn type 21047 73-72 BC 0.6
cn type 21142 c. 100-30 BC 1

Table 1: Coin types from an example coin find with 3 coins.

3 Literature

In this section we look at RDF reasoning approaches from different domains to find suitable solution for
the numismatic use cases:

1. Reasoning in context-aware Systems

2. Query-Time Reasoning using Soft and Hard Rules

3. Reasoning in Fuzzy RDF Graphs

4. Academic Meta Tool

1https://www.corpus-nummorum.eu/types/21047
2https://www.corpus-nummorum.eu/types/21142
3https://www.corpus-nummorum.eu/types/20885
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3.1 Reasoning in context-aware Systems

The article [2] demonstrates an approach to handle uncertainty in context-aware systems which the authors
use to detect persons and their activities in assisted living facilities. The authors propose a procedure to
measure uncertainty from the sensor level based on hardware characteristics. They extend the semantic
modelling approach to include this uncertainty which allows the expression of confidence levels in events
received from sensors. This uncertain information is then used to derive contextual information.
Figure 4 shows the ontology from the paper with uncertainty. The authors use "sensor A6 hasCurrentState

Figure 4: Ontology with uncertainty. From [2].

ON with a certainty level of 74.1%" to infer the derived information "patient detectedIn LivingRoom with
a certainty level of 74.1%" and "patient doesActivity WatchTV with a certainty level of 74.1%". Conflicts
can happen due to malfunction from the sensors where sensors from different rooms also trigger. Therefore,
authors also present a decision-making mechanism to manage conflicts among the sensors. The authors
choose Dempster-Shafer theory (DST) [12] as the decision-making method in their approach. They ex-
plain that the theory allows for the incorporation of uncertainty from different sources and provides better
performance than previous approaches like Bayesian Inference for reasoning with uncertainty [18].
They use data from Monte Carlo simulations and real deployments to validate their uncertainty manage-
ment approach. The results show that the performance of the system in activity detection is influenced
by the choice of hardware characteristics used to identify faulty sensors and the number of faulty sen-
sors. A good selection of characteristics lowers the confidence granted to faulty sensors and improves the
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performance. Additionally, are high-coupled sensors (sensor fires → one activity detected) better than
low-coupled (sensor fires → many activities detected) for exact activity detection.
Overall, the authors show the importance of quantifying uncertainty in context-aware systems. Their ap-
proach improves context-aware reasoning through methods for resolving conflicts and lowering confidence
in faulty hardware. They emphasize the need for careful sensor selection (low and high coupled sensors)
and selection of hardware characteristics to detect faulty sensors.

3.2 Query-Time Reasoning using Soft and Hard Rules

The article [7] introduces another way of reasoning with uncertain RDF data through a proposed frame-
work, URDF. The framework combines soft rules (deduction rules) and hard rules (consistency constraints)
to handle uncertain RDF data. Inconsistencies are dynamically resolved at query-time using a modified
approximative weighted MaxSAT algorithm from [5].
The soft rules are weighted Horn clauses that will be maximized by the modified weighted MaxSAT algo-
rithm. An example soft rule could be "if two persons have the same address, they know each other with
a confidence of 0.6". Hard rules on the other hand have no weight but are constraints that need to be
satisfied. An example hard rule would be that no person could have two birth dates.
The experiments were conducted with handcrafted, synthetic or inductively learned soft and hard rules
to confirm that URDF is robust and significantly improves runtime compared to other state-of-the-art
techniques.
Overall, the article shows that URDF is an effective approach for query-time reasoning over uncertain RDF
data. The framework improves runtime and provides query answers with an approximation guarantee of
up to 0.83, which means their MaxSAT approximation gets at least 83% of the weight of the optimal
solution, depending on the use case.

3.3 Reasoning in Fuzzy RDF Graphs

In [6] the authors describe a way to reason in uncertain RDF graphs using the Ontology Web Language
(OWL). The OWL extends the RDFS semantics by adding a full set of entailment rules which can be
computed in polynomial time. Fuzzy RDF is introduced to model vagueness by giving the fuzzy RDF
triples a degree of uncertainty 0 < x ≤ 1. The paper extends the pD* semantics [13] of OWL to allow
vagueness in the graph using fuzzy logic [4].

Figure 5: Fuzzy Interpretation Extension. From [6].

Fuzzy logic in figure 5 allows statements that are not strictly true or false but can have fuzzy degree of
n attached to them which means the degree of truth is at least n. ⊕, ⊗ and ⊖ are combination functions
like triangular norms.

A fuzzy RDF triple is in the form of (s, p, o)[n] where (s, p, o) is a normal subject-predicate-object triple
and n denotes the degree of uncertainty. The paper provides a set of entailment rules derived from the
fuzzy logic and the pD* semantics. A part of those is seen in figure 6 where ⊗ is a combination norm
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Figure 6: Fuzzy pD*-Entailment Rules (Part). From [6].

again. Using the entailment rules fuzzy RDF triples can be derived from a fuzzy graph.
The authors define the Best Degree Bound (BDB) n of a derived triple (s, p, o) from a fuzzy RDF graph
as the highest fuzzy degree that can be obtained using the given entailment rules. Example: You have the
triples (coin1, depicts, apollo)[0.1], (coin1, sameAs, coin2)[0.8] and (coin2, depicts, apollo)[0.3] you can
derive (coin1, depicts, apollo)[0.1] and (coin1, depicts, apollo)[0.8 ·0.3 = 0.24] when using the product rule
as ⊗. (coin1, depicts, apollo)[0.24] would be the Best Degree Bound. The authors showed that a BDB
always exists for a fuzzy RDF triple derived from a graph. They also defined a way for a partial pD*
closure which can be computed within polynomial time.

3.4 Academic Meta Tool

In the paper [16] the authors describe another way to reason in uncertain graphs using context dependent
axioms that vary per use case. They show some example use cases in their interactive web tool.
To use their Academic Meta Tool (AMT) you first define the concepts which are categories for the nodes
in your RDF graph. Then you define the roles that represent the relationships between the categories and
have a certainty value between one and zero. The last step is to define axioms which the AMT uses for the
reasoning. There are role chain axioms like in figure 7 that are similar to the owl:ObjectPropertyChain

Figure 7: Role chain axiom illustration. From [16].

in OWL 2 but in AMT you can also define which logic to use for the chain. You can choose between
Lukasiewicz, Product and Goedel logic. With the inverse axiom in figure 8 you can describe that two roles
are inverse to each other like owl:inverseOf. For consistency checking you can also define disjoint axioms
and self-disjoint axioms.
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Figure 8: Inverse axiom illustration. From [16].

4 Methods

This section is about RDF (and its extensions) and how to use it to model uncertainty using reification
and RDF-star.

4.1 RDF, RDFS and OWL

RDF (Resource Description Framework) and RDFS (RDF Schema) are fundamental technologies in the
field of Semantic Web and Linked Data. They provide a structured way to represent and describe data
on the web as a graph, enabling machines to process more complex queries with semantic meaning. One
of the core concepts of RDF are the triples, which represent subject-predicate-object relationships. These
relationships, also called statements, allow data to be structured in a way that captures not just the
content but also the broader context. In a RDF graph, a node can be anything from a simple textual
string to a complex data structure, and these nodes are connected through predicates that define the
relationships between them. Every RDF resource including the properties (predicates) have a Uniform
Resource Identifier (URI).
RDFS extends RDF by introducing a basic ontology system. RDFS defines essential concepts such as
classes, property description and class hierarchies, allowing for the creation of simple ontologies. Ontologies
are knowledge models that help to further define the meaning and context of RDF resources. With RDFS
you can define classes to categorize resources and properties to describe relationships between them. For
example, there is an ontology with the classes Coin and Mint. To describe the property hasMint the
properties rdfs:range and rdfs:domain can be used to express that the usage is Coin hasMint Mint.
The Web Ontology Language (OWL) further extends the ontology system from RDFS to for example
express inequality or equality between two classes or properties. It also supports description of property
characteristics like inverse, transitive or symmetric.

4.2 Reification and RDF-star

Reification in the RDF context is a mechanism that allows you to represent statements about statements
using a blank node and rdf:Statement, rdf:subject, rdf:predicate and rdf:object. In figure 9 you
can see a reification example where the statement ex:coin1 nmo:hasMint nm:rome is represented and
further described with a certainty value ex:certaintyValue and a model ex:accordingTo that created
the statement.

RDF-star [10] is another way of representing statements about statements in RDF. It is currently only
a draft and not part of the W3C RDF recommendation, but it is already implemented in open-source
applications like Apache Jena. Reification uses four triples to describe the statement plus two triples with
additional information about the statement for our example in in figure 9. RDF-star on the other hand
allows the description of statements directly without a blank node so you only need three RDF statements
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Figure 9: Reification example.

for our example. In figure 10 you can see the example written in Turtle-star notation. Research from [9]
has shown significant improvements in runtime when switching from reification-based modelling to using
RDF-star. However, RDF-star is currently in development and not yet fully implemented in most systems.

@prefix ex: <http://example.com/> .
@prefix nm: <http://nomisma.org/id/> .
@prefix nmo: <http://nomisma.org/ontology#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<< ex:coin1 nmo:hasMint nm:rome >> ex:certaintyValue "0.8" .
<< ex:coin1 nmo:hasMint nm:rome >> ex:accordingTo ex:model1 .

Figure 10: Example from figure 9 as Turtle-star.

5 Numismatic Use Cases in RDF

In this section we will look at the use cases from section 2 and try to solve them using RDF and currently
available tools from section 4. The URDF framework from section 3.2 showed no potential use case yet
because the use cases are more about handling and merging uncertainty values rather than eliminating
inconsistencies using constraints. URDF is also using an approximative algorithm, so you probably won’t
get the optimal solution. The Fuzzy RDF approach from section 3.3 isn’t used either because the use cases
don’t depend on using complex OWL hierarchies so using the simpler AMT approach is sufficient.
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The Academic Meta Tool and the context-aware approach are both using reification like figure 9 to represent
the uncertainty in the graph. When RDF-star is added to the W3C RDF recommendations and gets
broader support in RDF tools you could also modify those models to work with RDF-star to improve the
runtime and graph size.

5.1 Use Case 1: Coin Type and Coin Similarity

Generally, this use case could be solved using the Academic Meta Tool when only one AI model or expert
opinion is used to determine the similarity between coin types. The problem with multiple models is that
the AMT only uses the path with the highest probability. An example is in figure 2. For the connection
between coin type 1 and coin type 2 the AMT would only consider model 3 because it has the highest
similarity value among the connections.
To tackle this there can be a preprocessing step that merges those 3 similarity values on all connections
between coin types. The Dempster–Shafer theory from the context-aware approach is not applicable for
this because the similarity is not a classification where all values add up to one. Similarity only represents
the connection between two coin types and the similarity to other coin types is irrelevant. That’s why the
preprocessing step can just take the average or median of those values, create a new connection between
the coin types and delete the old ones so they don’t interfere while reasoning with the AMT. Looking at

Model Coin Type 2 Coin Type 3 Coin Type 4
Model 1 0.5 0.3 0.7
Model 2 0.3 0.4 0.5
Model 3 0.6 0.1 0.9
Merge Func
Average 0.47 0.27 0.7
Median 0.5 0.3 0.7

Table 2: Example connection values between coin type 1 and other coin types according to different models.

the example from 2.1 we had coin 1 classified as the coin type ric.1(2).aug.4A with confidence of 0.8
and coin 2 is classified as ric.1(2).aug.5 with a confidence of 0.7. The similarity value between the
coin types is 0.9. Using AMT role chain axioms with product logic we can calculate the probability of
coin 1 being ric.1(2).aug.5 and with this new connection you can define another role chain axiom to
calculate the similarity between coin 1 and coin 2 like in figure 11. Additionally, you could normalize the
connections between coins and coin types so they sum up to one and calculate the probability of coin 1
being ric.1(2).aug.5 instead of ric.1(2).aug.4A: 0.72

0.72+0.8
= 47%.

If a coin is to corroded to classify them as, for example, either ric.1(2).aug.5 or ric.1(2).aug.4A
you could connect the coin to both coin types directly with a confidence of 1 divided by the number of
alternatives 1/2 = 50%.

5.2 Use Case 2: Issuer/Depicted Person

For this use case AMT can’t deal with the uncertain checkbox or issuers that don’t match the depicted
person. This time the Dempster-Shafer theory [12] from the context-aware approach can be used the list
with issuers and depicted person adds context to handle.
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Figure 11: Coin similarity use case as AMT role chain axioms with product logic.

The first mass function is the probability of the n alternatives which is 1
n
. For the uncertain checkbox could

be represented as another subset which contains all issuers and is also another alternative. The domain
knowledge is another mass function which is uniformly distributed on the issuers for the given depicted
person. In table 3 you can see an example with 3 alternatives and the uncertain checkbox checked. You
know that only issuer alternatives 1 and 2 already have coins with the selected person. To simplify only one
depicted person is selected with a confidence of 1 (no alternatives and uncertain checkbox not selected).
Alternative depicted persons will add another layer which needs additional handling.
In the final graph you can use the joint mass as the connection value between coin and issuer. One problem
with this approach is how the Dempster-Shafer theory handles non shared subsets like in table 4. The
second mass function from the domain knowledge may need a predefined fraction of mass distributed over
all issuer to tackle this.

Subset Probability Domain
Knowledge

Joint Mass Plausibility

{Alternative 1} 0.25 0.5 0.5 0.5
{Alternative 2} 0.25 0.5 0.5 0.5
{Alternative 3} 0.25 0 0 0
{All issuers} 0.25 0 0 1

Table 3: Example AFE use case with issuer alternatives using DST with normalization. The first three
subsets only contain a single element and {All issuers} contains all issuers that can be selected.

Subset Probability Domain
Knowledge

Joint Mass Plausibility

{Alternative 1} 1 0 0 0
{Alternative 2} 0 1 0 0
{All issuers} 0 0 0 0

Table 4: Problematic use case for DST.
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5.3 Use Case 3: Closing Date for a Hoard

For this use case AMT has no axioms to handle dates or date ranges and the fuzzy entailment rules can’t
handle those either. It is also not solvable using soft and hard rules because you don’t want to resolve
inconsistencies by enforcing constraints. Only the context-aware approach could work when you use the
years in the subsets to model the date ranges. The problem will be coins with no overlapping date ranges
which results in the same problem as seen in table 4. In table 5 you can see the example from table
1 solved using the Dempster-Shafer theory. The last step could be to choose the earliest year from the
subsets and assign it with the subsets joint mass value to get the possible stop dates (on the year level)
with their probability:

• 73: 0.6

• 85: 0.22

• 100: 0.18

Subset cn type 20885 cn type 21047 cn type 21142 Joint Mass
{72, 73} 0 0.6 0 0.6
{70, ..., 85} 0.55 0 0 0.22
{30, ..., 100} 0 0 1 0.18
{All years in
scope}

0.45 0.4 0 0

Table 5: Stop date use case from table 1 solved using DST. Subsets contain years BC.

6 Conclusion

This paper is a broad direction how to solve numismatic use cases using RDF and existing tools and
approaches. Three use cases were defined and four tools from different domains were presented handle
those use cases. The Academic Meta Tool and the context-aware approach using the Dempster-Shafer
theory showed promising results for numismatic RDF graphs while the Fuzzy RDF graphs and the MaxSAT
algorithm for soft and hard rules from URDF had no potential use case yet. Fuzzy RDF graphs could
be used for more complex OWL hierarchies in the future but for the current use cases the simpler AMT
approach is sufficient. URDF uses constraints (hard rules) to eliminate inconsistencies but for the defined
use cases you rather need to merge and aggregate multiple probability values from the inconsistencies.
Further research could extend AMT to handle and aggregate multiple connections for the use case 1
similarity models. Additionally, the use of RDF-star could be implemented to test the performance against
the current reification approach. Use case 2 and 3 also show the potential use of the Dempster-Shafer
theory to combine probability values but further research is needed to verify these findings and translate
the use cases into mass functions.
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