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Subjective evaluation of AI explainability methods and their applicability to chest x-rays

1 Introduction

The creation of more powerful machine learning models implicates the utilisation of more and

more complex architectures and implementations, leading to a trade-off between transparency and

performance (Lipton, 2018). This becomes all the more evident in deep neural networks, where the

great abstraction caused by the high number of layers causes a sacrifice of interpretability/transparency

for accuracy/performance (Selvaraju et al., 2017). While it may be tedious, it is still possible to

manually solve the mathematical operations being performed under the hood by a perceptron or

very simple neural network. Lipton (2018) delves into how to the simulatability of a model -the

feasibility for a human to take the input data and manually go through every calculation to come up

with a prediction within reasonable time- suggests transparency by empirically demonstrating a

model is fully understood.

Machine learning models used for research nowadays utilise thousands of parameters and high

dimensional data representations, making it unfathomable for humans to retain and recreate machine-

made calculations manually. An unwanted scenario derived from this would be a black box that may

deliver accurate results, while we remain ignorant as to how it’s making the decisions we receive as

output.

Interpretations of models help humans investigate the potential causality in correlations between

data. Knowing how a model makes its decisions allows us to gain crucial understanding about

its modus operandi, which in turn lets us debug our model more efficiently, corroborate made

predictions and design improvements derived from it (Lipton, 2018).

Lipton (2018) emphasise the necessity for interpretability as a means to engender trust and a

requirement for fairness, similar to how explicability is seen as an ethical principle necessary for

the creation of turstworthy AI (High-Level Expert Group on Artificial Intelligence, 2019) . It is
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important to specify that trust is not to be seen as mere confidence in the predictive capabilities of a

model but also as the willingness to relinquish control to the model. If we trust a model, we are

more likely to agree relinquishing control to it.

An important caveat here is that the focus doesn’t lie on how often a model is right but for which

cases it is right. If the model tends to make mistakes in input space regions where humans also make

mistakes and is accurate when humans are, it can be considered trustworthy. However, if the model

makes mistakes for inputs humans can classify accurately, this shortcoming represent an added cost

which may not warrant relinquishing control to the model, ergo a more present human supervision

is needed (Lipton, 2018).

Selvaraju et al. (2017) refers to transparency and the interpretability to understand why a given

prediction came to be as explicitly necessary for building trust on AI systems, highlighting its

importance throughout the stages of evolution of artificial intelligence:

1. A system that is "weaker" than humans and considered unreliable, hence transparency is

needed to identify a model’s failures.

2. A system that is on par with humans and considered reliable (such as an image classification

model with appropriate training) requires building trust to relinquish control and reduce direct

human oversight.

3. A system is stronger than humans (for instance at chess or Go) and we want explainability in

order to learn from the model.

Furthermore, the bigger the impact the decisions taken by a model ultimately have, the more trust is

required, especially if the model’s prediction does not concord with the opinion of a human expert

of the respective field.

For example, if a model designed to identify tumours based on x-rays claims a patient has a
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cancerous tumour requiring surgical intervention, whereas a radiologist disagrees and deems surgical

procedures unnecessary one can greatly benefit from a better grasp on how the model came to such

conclusion in order to refute or agree with its prediction more reliably. Similarly, we do not want to

run into a paternalistic scenario where we unconditionally act as suggested by the model despite

being oblivious as to how it operates and why it makes its decisions the way it does (Zicari et al.,

2021); such a conundrum would also raise the question as to whom bears the responsibility when a

fatal mistake is made either by a user (e.g clinician utilising predictive model to support assessment)

or by the model (e.g considering the possibility of holding the model developers accountable).

The work presented in this report spans the implementation of a pre-trained deep neural network

for image classification, the comparative evaluation of different explainability approaches as well

as the integration and evaluation of a metric for quantitatively assessing the quality of provided

explanations. Finally, the evaluation of explanation techniques is also performed with a real-world

AI system.

2 Explainability methods

Throughout the implementation phase we utilised the deep neural network resnet 50, which is a

variant of Resnet (He et al., 2016) with 48 convolutional layers along with one max pooling and one

average pooling layer; such networks mitigate the problem of vanishing gradients and make use of

residual connections to efficiently learn the identity. Our network was pre-trained on the ImageNet

dataset, a visual databased frequently used in deep learning research consisting of over 14 million

manually labelled images (Deng et al., 2009). For ease of reference, we shall focus most of the

following examples on the same 224x224 pixel colour image (see figure 1) fed into our pre-trained

instance of Resnet 50, which was correctly classified by the model as ’golden retriever’.
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Figure 1: Resnet 50 model’s top 5 prediction scores for image of class ’golden retriever’

The same image was explained utilising the following methods:

• LIME (Local Interpretable Model-agnostic Explanations)

• SHAP (SHapley Additive exPlanations)

• Saliency maps

• Integrated gradients (IG)

• Grad-CAM (Gradient-based Class Activation Mapping)

• XRAI (eXplanation with Ranked Area Integrals

2.1 LIME (Local Interpretable Model-agnostic Explanations

LIME is a model-agnostic approach introduced in Ribeiro et al. (2016), which proposes an explanation

model learned locally to approximate a given prediction. The first step is to aggregate pixels into

5



Subjective evaluation of AI explainability methods and their applicability to chest x-rays

Figure 2: LIME explanation for predicted class ’golden retriever’ showing the most influential
superpixels for the prediction. Green superpixels increase the prediction contribution, while red
superpixels reduce it (negative influence). 1

superpixels to effectively delimit regions within the image in question. LIME trains a local surrogate

model to approximate a given individual prediction through probing the model being investigated.

In order to discern what regions of an image are the most influential for the underlying model’s

decision to predict it as belonging to a certain class, LIME generates a new dataset consisting of

perturbed image samples (copies of the image with randomly deactivated superpixels) and the

respective prediction outcomes when fed into the original model; an interpretable model is then

trained to assess which regions of the original image are the most influential in the model’s predictive

decision. In figure 2 we can observe the most influential superpixels highlighted in an image

predicted as ’golden retriever’, where the green superpixels have the largest contribution increase to

the prediction, while the red ones represent he largest decrease.

1LIME explanation created with the LIME python package https://pypi.org/project/lime/
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2.2 SHAP (SHapley Additive exPlanations)

This method leverages the notion of Shapley values from coalitional game theory -where one

quantifies the contribution of every player to a total payout- to explain the prediction of an instance by

computing the contribution of each feature to the prediction. As with LIME, the image in question

is not represented on the pixel level but as an aggregation of superpixels.

A positive Shapley value indicates a superpixel contributes to increasing the explained prediction,

while a negative value decreases it. A series of coalitions is randomly sampled; a coalition being

a possible configuration of the image in question with certain superpixels turned on while others

are turned off (removed from the image / replaced with black pixels). After getting the predictions

for each one, the weight of each coalition is computed, giving larger weights to the coalitions with

just one or most features turned on or off, as they tell us about the impact of individual features

in isolation. Conversely, a coalition where around half of the features (superpixels) are present,

we won’t gain much insight on an individual feature’s contribution, thus it is assigned a very

small weight. The fundamental difference in contrast to LIME lies here: whereas SHAP assigns

weights to the sampled instances according to the weight the coalition wold get in the Shapley value

estimation (small and large coalitions are assigned the largest weights as they tell us the most about

the contribution of individual features through their isolated presence / absence), the weight value

assigned by LIME is directly proportional to the number of present features in a given coalition e.g.

a sample where only one superpixel is present would have a very large weight when using SHAP

and a very small weight when using LIME.

Figure 3 shows us which regions of the image SHAP computed a big contribution impact (both

positive and negative) on its prediction. Having not only the top class but also the following 3 labels

and their explanations displayed next to each other helps elucidate not just why an image is labeled

7



Subjective evaluation of AI explainability methods and their applicability to chest x-rays

Figure 3: SHAP explanation for the top 4 predicted classes. Blue superpixels detract from the
prediction, whilst red superpixels increase the prediction contribution.2

as a certain class but also why it's not labeled as a di�erent one.

2.3 Saliency maps

Saliency maps are a widely used method to explain the �nal classi�cation decision of a convolutional

neural network. This form of pixel attribution quanti�es the contribution of every pixel in the

image to its ultimate prediction outcome by establishing a directly proportional relation between the

pixel intensity (its produced output is visualised as a heatmap) and said pixel's relevance towards

ultimately labelling the input image as belonging to the predicted class.

Simonyan et al. (2013) introduces an approach to quantify these pixel attributions in a way akin to

the common computation of a gradient used in backpropagation: After performing a forward pass

on a given image, we compute the gradient of the class score of interest with respect to the input

pixels and visualise the gradients as observed in �gure 4.

2SHAP explanation created with the SHAP python package https://pypi.org/project/shap/
3Saliency map explanation created using Tensor�ow keras and Uzman Riswan's implementation

https://usmanr149.github.io/urmlblog/about.html
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Figure 4: Saliency map for predicted class 'golden retriever'. Higher intensity gradient visualisations
in the heatmap represent a bigger contribution to the prediction.3

2.4 Grad-CAM (Gradient-based Class Activation Mapping

Selvaraju et al. (2017) sets speci�c criteria for what they deem a good visual explanation:

ˆ The explanation must be class-discriminative, meaning the category can be localised within

an image. For example, in �gure 5 we can see how we apply pixel-space gradient visualisation

in the area of the image where the cat is being highlighted when explaining 'cat' (the same for

explaining 'dog'), making it easier to fathom why such a prediction occurred

ˆ The explanation must be high-resolution, meaning it is capable of capturing �ne details.

Based on these criteria, they developed Grad-CAM. The goal of this method is to produce visual

explanations for decisions from CNN-based models for tasks such as structured outputs, visual

question answering and reinforcement learning; without the necessity of re-training or architectural

changes.

A localisation map is produced to highlight important regions in the image for the resulting prediction.

A major aspect that di�erentiates this method from saliency maps is that a high gradient doesn't
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