
 

MODELING UNCERTAINTIES AND 
BELIEFS USING ONTOLOGIES 

Melvin S. Metzger 
B.Sc. Thesis, Computer Science 

 
  

SEPTEMBER 8, 2014 
GOETHE-UNIEVRSITY FRANKFURT AM MAIN 

DEPARTMENT OF COMPUTER SCIENCE 



1 | T a b l e  o f  C o n t e n t s  
 

Table of Contents 
Abstract ................................................................................................................. Error! Bookmark not defined. 

1. Introduction ................................................................................................................................................. 2 

1.1. The Semantic Web ............................................................................................................................... 2 

1.2. RDF and RDFS ...................................................................................................................................... 3 

1.3. OWL ..................................................................................................................................................... 4 

1.4. Uncertainty .......................................................................................................................................... 4 

1.5. Illustrations .......................................................................................................................................... 5 

1.6. Examples .............................................................................................................................................. 6 

2. ontology modeling approach ...................................................................................................................... 7 

2.1. W3C’s Uncertainty ontology................................................................................................................ 8 

2.2. International Council of Museums Conceptual Reference Model .................................................... 14 

2.3. Uncertainty Framework ..................................................................................................................... 21 

2.4. Comparing modeling approaches...................................................................................................... 25 

3. Mathematical approaches ......................................................................................................................... 28 

3.1. BayesOWL .......................................................................................................................................... 28 

3.2. Fuzzy OWL 2 ...................................................................................................................................... 32 

3.3. URDF .................................................................................................................................................. 36 

3.4. Comparing mathematical approaches .............................................................................................. 38 

4. Conclusion ................................................................................................................................................. 39 

Appendix A ........................................................................................................................................................ 40 

Appendix B ......................................................................................................................................................... 40 

Appendix C ......................................................................................................................................................... 41 

References ......................................................................................................................................................... 43 

 



2 | A b s t r a c t  
 

Abstract 
 

Dealing with uncertainties is an important issue in modelling ontologies for the Semantic Web. This thesis 

presents and compares different representations and mathematical approaches such as fuzzy logic, Bayesian 

networks and probabilistic logic to model uncertainties using ontologies. 

1. Introduction 
 

This section gives an introduction to the Semantic Web, its basis languages, uncertainty and its usefulness in 

the Semantic Web as well as the illustrations and examples used in this thesis. Section 2 presents and 

compares three approaches to the problem, using ontology modeling techniques. Section 3 presents and 

compares three approaches to the problem, based on different mathematical theories. Finally section 4 

gives a conclusion of the findings of sections 2 and 3. 

1.1. The Semantic Web 
The idea of the Semantic Web is to add machine understandable semantics to the World Wide Web (WWW). 

The leading supporter of the Semantic Web is the World Wide Web Consortium1 (W3C). The WWW formerly 

consisted only of HTML pages that on the one hand provide great freedom of publishing to the WWW but on 

the other hand lack the quality of structuring information so that the semantic meaning can be interpreted 

by machines.  

The intention of the Semantic Web is to add meta-data, i.e. data about data, processible by machines and to 

make machines “understand” the semantics of web documents and the web of their subsumption. [1] 

The Semantic Web is about giving meaning to structured data resulting in a “Web of data” [2] [3]. 

An example stated in [1] is that a common keyword search over documents may have a load of results 

suggesting documents that carry the same keyword somewhere in the document but in a completely 

different context than what the searcher was looking for. If the search engine knows the context searched 

for and meta-data about the searched documents provides it with the information on the context of each 

document, the search could give more precise results by matching the context as well as the keyword. 

Please note that this example was stated in 2003 and today’s search engines use far more powerful 

techniques than simple keyword search. Nevertheless it is a good example to understand the advantages of 

the Semantic Web. For instance if the searcher is currently visiting an American football page and from there 

starts a search with the keyword “dolphins” the search engine could get the context “American football” 

from the current pages meta-data and take it into consideration. The search then could suggest pages with 

information about the American football team “Miami Dolphins” before suggesting information about the 

animal. Due to the context the first seems to be a more appropriate result. 

The W3C has established languages to provide such “machine-processible semantics of data” [1] in order to 

extend the “Web of documents” [2] by a “”Web of data”, the sort of data you find in databases” [2].

                                                             
1 http://www.w3.org/ 



3 | T h e  S e m a n t i c  W e b  
 

User interface and applications

Identifiers: URI Character set: UNICODE

Syntax: XML

Data interchange: RDF

C
ryptograp

hy

Taxonomies: RDFS

Rule: RIF/SWRLOntologies: OWL

Unifying logic

Trust

Querying: 
SPARQL

Proof

 

Figure 1: Semantic Web Stack 

Figure 1 shows the so called Semantic Web Stack consisting of the different languages and concepts that 

support the Semantic Web. The figure was adjusted to fit the design of this thesis. The original figure can be 

found in [4]. In the following, a short introduction into the languages that appear in this thesis will be 

provided. The other parts of the Semantic Web Stack will not be explained in this thesis. More information 

on these parts can be found in [1] and [3].

 

1.2. RDF and RDFS 
RDF stands for Resource Description Framework. “RDF is a standard model for data interchange on the 

Web.” [5] The Syntax is based on XML and the core elements of RDF are the so called RDF triples that can 

combine two individuals identified in a relationship. An RDF triple has an intuitive resemblance to natural 

language. Thus the three elements are called subject, predicate and object, where the predicate denotes a 

property, the relationship between subject and object. Each of these components are identified with 

uniform resource identifiers (URI). With RDF there also comes a number of predefined properties as for 

example rdf:type that is “used to state that a resource is an instance of a class” [6]. Classes are used to group 

and properties are used to describe resources. RDFS (RDF Schema) extends RDF by class hierarchies and 

other useful features. For more information on RDF and RDFS please review [5], [6], [7] and [8]. 

RDF triples are commonly displayed as graphs as in Figure 2: RDF tripleGraph illustrations are described in 

greater detail in section 1.5. 

 

hasMint

subject predicate object  

Figure 2: RDF triple 



4 | O W L  
 

1.3. OWL 
“The W3C Web ontology Language (OWL) is a Semantic Web language designed to represent rich and 

complex knowledge about things, groups of things, and relations between things.” [9] 

OWL is syntactically based on RDF and generally based on description logics. It is used to define ontologies 

that consist of classes, properties and individuals and represent machine-understandable knowledge. Thus 

OWL is a declarative language and not a programming language. Another name for the current version of 

OWL is OWL 2. When OWL is mentioned in this document the current version of OWL (OWL 2) is meant. For 

more information on the difference between OWL 2 and OWL 1 please refer to [10]. Some upcoming 

sections use OWL to model uncertainties in ontologies and for that, familiarity with OWL is presupposed. For 

more information on OWL please see to [9] and [10].

 

1.4. Uncertainty 
“In this Report, the term "uncertainty" is intended to encompass a variety of aspects of imperfect knowledge, 

including incompleteness, inconclusiveness, vagueness, ambiguity, and others” [11].  

This quote from the W3C’s Uncertainty Reasoning for the World Wide Web [11] is best to describe how the 

term “uncertainty” is used in this thesis. Uncertainty is interesting to the Semantic Web for a number of 

reasons. Ontologies in the Semantic Web commonly work with the assumption that knowledge is certain. 

Nevertheless uncertainty is encountered and needs to be handled under a number of circumstances. One of 

these is Knowledge Integration. When two ontologies are integrated, it is most unlikely that an exact fit is 

achieved. Concepts of different ontologies could match only partially, individuals from one ontology could 

match multiple concepts of the other one and so on. For example the concept “hot” in an ontology about 

the weather is likely to differ partially from the concept “hot” (as the term for temperature) in an ontology 

about cooking. To represent such incomplete or uncertain matches it is useful to apply some degree of 

match or membership. Even when two ontologies can be matched exactly, the mass of information 

accessible in the Semantic Web comes from different sources that could (or rather should) be observed with 

different degrees of belief or trust. These degrees of trust and belief should also be considered when 

integrating knowledge. Ontology learning as an automated procedure of generating ontologies from natural 

language is likely to result in probabilistic or uncertain ontologies as well. In short uncertainty is a side effect 

of common features of the Semantic Web. [11] 

Uncertainties can also be within ontologies. A common example is a weather report that contains 

information about how the weather is assumed to be and is usually weighted with some degree of certainty. 

[12] There can also be uncertain knowledge due to incompleteness of the information the knowledge is 

based on. Such uncertainties need to be modelled within ontologies. It is not satisfactory for every developer 

who encounters uncertain information to build an own model of uncertainty, because uncertain information 

should also be exchangeable in a manner that keeps the interpretation of the uncertainty alive. When a 

package, containing uncertain information that is modelled in some way, is received and the receiver has his 

own way of modelling and thus interpreting the uncertainty, the uncertain information could falsely be 

assumed certain and the uncertain information could be lost. This means that it is necessary for sender and 

receiver to have the same interpretation and model of uncertainty so that the receiver can interpret it in the 

way the sender intended. This calls for a standardized representation of uncertainty for the Semantic Web. 

[11] 

Benefit can be received from handling uncertainty within the Semantic Web by exploiting partial information 

as it is typical for a large source as the WWW. “For example, that an online service deals with greeting cards 

may be evidence that it also sells stationery. It is clear that search effectiveness could be improved by 

appropriate use of technologies for handling uncertainty.” [11]



5  | I l l u s t r a t i o n s  
 

1.5. Illustrations 
In the following sections ontology models are illustrated as directional graphs.  

A class is displayed with a white rectangle, an individual with a grey ellipse and a data value with a white 

ellipse with a dashed outline. Different namespaces and individuals are organized in “Swimlanes” which 

originally are used in cross-functional flowcharts. Most namespaces are denoted using short-cuts. A 

complete table of used namespaces is given in Appendix A. The namespace of a property or class can also be 

denoted as prefix as in rdf:type where the property type has the namespace rdf. For classes such prefixes are 

disregarded because classes are always located in the “Swimlane” of their namespace. To promote visibility 

the reoccurring attributes rdf:type, rdfs:subClassOf, rdfs:subPropertyOf have their own figure. rdf:type is 

illustrated with a dashed, grey arrow, rdfs:subClassOf with a solid, thick, grey arrow and rdfs:subPropertyOf 

with a blue dash-dotted arrow. 

In
d

iv
id

u
a

ls
b

a

Mint

Piece of Metal

Coin

Origin
a:hasOrigin

b:hasMint

b:hasDiameter

 

Figure 3: Graph design 

Figure 3 is an example of how upcoming graphs are designed. The displayed namespaces do not actually 

exist and this is no suggestion to how any of the content should be modeled in an ontology. 

The individual CoinX is of type Coin which is a subclass of Piece of Metal. The individual Rome is of type Mint 

which is a subclass of Origin. CoinX is linked to Rome via the property hasMint which is a subproperty of 

hasOrigin linking a Piece of Metal to an Origin. Also CoinX is linked to the data value 0.8 with the property 

hasDiameter. The classes Coin and Mint come from the namespace b. Piece of Metal, Origin and the 

property hasOrigin come from namespace a. Note that the property hasOrigin is shown to connect the 

corresponding classes in its namespace contrary to hasMint (hasDiameter) which is only shown to connect 

the individuals. This is to display that hasOrigin has domain and range restrictions defined and hasMint 

(hasDiameter) does not. For hasOrigin the domain is Piece of Metal and the range is Origin. For hasMint 

(hasDiameter) there is no restriction of domain and range defined. Nonetheless hasMint being a 

subproperty of hasOrigin derives the domain and range restrictions and they are fulfilled due to the given 

subclass relations. 



6  | E x a m p l e s   
 

1.6. Examples 
To show how the different approaches model uncertainties a simple example is used throughout this 

document. Some coin was minted in Rome, where Rome refers to the mint not the region (as it is defined by 

nomisma.org2), is represented as: CoinX has Rome as a Mint, where CoinX is an instance of the class Coin and 

Rome is an instance of the class Mint. The property connecting these individuals is hasMint. 

In
d

iv
id

u
al

s
e

xp Coin Mint

exp:hasMint

 

Figure 4: Example used throughout the document 

Figure 4 illustrates the simple example used throughout the document. 

The classes and property used in this example are leaned on, but not exactly the same as in the Nomisma 

ontology (NMO). NMO is an ontology developed to represent numismatic concepts for nomisma.org3. 

Especially the property hasMint in NMO is intended to be used in a slightly different way than in this 

example as explained in section 2.1. To differentiate the classes and properties made up for an example 

from real elements of NMO or others, they are denoted with the namespace “exp” standing for example.

                                                             
2 http://nomisma.org/id/rome 
3 http://nomisma.org/ 



7  | O n t o l o g y  m o d e l i n g  a p p r o a c h  
 

2. Ontology modeling approach 
 

The method to integrate uncertainties in ontologies, described in this section is to model uncertainties using 

existing principals and tools especially OWL and RDF develop ontologies. The main intention is to add a 

measure of uncertainty to a relation between two individuals. If for example some coin CoinX has Rome as a 

Mint, that fact can be described by linking both the coin and the mint via a property (CoinX hasMint Rome) 

as illustrated above. 

The problem encountered when adding uncertainty to this relation as in “CoinX has Rome as a Mint but I am 

uncertain”, is that properties in OWL (and RDF) are binary relations which means that they cannot couple 

more than two individuals. It is impossible to attach any degree of uncertainty to the property connecting 

CoinX and Rome. A solution to this problem as presented by the W3C in [13], is to add an individual 

representing the property and the appropriate number of properties (in this case three) to link all the 

relations participants as well as the additional information, namely the degree of certainty to this individual. 

In
d

iv
id

u
a

ls
e

xp Coin Mint

exp:hasMint

 

Figure 5: Information addition pattern 

This illustration (Figure 5) shows how a generic ID can be used to represent the uncertain relation between 

CoinX and Rome. Such a generic ID can be implemented with OWL as an anonymous individual. Note that 

two of the properties that need to be added are unnamed. Propositions on what properties could be used 

instead are made in the following sections. 

When there is more than one piece of information to add to the relation, this can be done by simply linking 

another individual representing the additional information to the individual objectifying the relation. 

In the following this pattern is called the W3C’s information addition pattern. Using this pattern the issue of 

properties being binary relations can be evaded and n-ary relations can be implemented [13]. 

The ontologies and modelling approaches described in sections 2.1., 2.2, and 2.3 all follow this pattern in 

some way.



8  | W 3 C ’ s  U n c e r t a i n t y  O n t o l o g y  
 

2.1. W3C’s Uncertainty ontology 
This section describes the W3C's Uncertainty ontology [11] and how it is partially used to model 

uncertainties in the Nomisma ontology (NMO).  

In the W3C's Uncertainty ontology (UN) the main idea is that an agent says some sentence about some 

world and this sentence has some kind of uncertainty.  

A world in UN “[..] represents the world about which the Sentence is said.” [11] In the use case “5.13 Buying 

Speakers” 4 provided by the W3C, an assertion about the availability of certain speakers in a certain store is 

made. In this case the world is the store in which the speakers are available (or not). 

A sentence in UN is "An expression in some logical language that evaluates to a truth-value (formula, axiom, 

assertion)[..]" [11]. In the following the sentence is interpreted as a statement annotated by a property or 

relation between multiple entities and thus is not reduced to a single node but to the context that the node 

represents. 

In
d

iv
id

u
al

s
ex

p
u

n

Coin Mint

rdf:valueexp:hasMint

Sentence

 

Figure 6: Use of un:Sentence 

Figure 6 shows how the statement "CoinX has Rome as a Mint" can be modelled with a generic ID as 

intersection. In this example the node genIDx for itself is obviously not a sentence since "genIDx" carries no 

expression that evaluates to a truth-value. However when the context that the node is put in, the properties 

that point to or from the node, is taken into consideration the node does indeed represent a sentence. 

The generic ID is a link between CoinX and Rome via the properties hasMint and rdf:value and thus 

represents the assertion "CoinX has Rome as a Mint". 

It is necessary to point out that this interpretation of un:Sentence is imprecise and comes with the unsolved 

problem of where it ends. For the above example it is relatively simple to say that the sentence represented 

by genIDx is not only this individual but all individuals that are directly connected to it with properties. Thus 

a boundary could be set so that the context of the assertion represented by a un:Sentence consists of every 

individual that is connected to it with distance 1 (directly with a property) in terms of graph theory. But 

there can be cases where the semantic context exceeds such a boundary as illustrated in Figure 7, where 

two alternative mints, that can be considered part of the assertions context, are connected indirectly 

(distance 2) to the un:Sentence node. 

                                                             
4 http://www.w3.org/2005/Incubator/urw3/XGR-urw3/#speakers 



9  | W 3 C ’ s  U n c e r t a i n t y  O n t o l o g y  
 

In
di

vi
d

ua
ls

e
xp

u
n

rd
f

Coin

Alt

rdf:valueexp:hasMint

Sentence

rdf:li

rdf:li

Mint

 

Figure 7: Problem with un:Sentence 

For such cases the boundary does not hold and is not adequate. The problem of exceeding the boundary is 

thinkable with any boundary, so that the problem of grasping the context of an assertion represented by a 

un:Sentence is rather complicated and yet unsolved.  

The above interpretation of un:Sentence is one of many. For example in use case “5.13 Buying Speakers” 5 

provided by the W3C a sentence can have sub-sentences and each sentence is represented in a single node 

where the caption holds the information. While it works for this use case, modelling the above example in a 

single node would obviously lack a great measure of expressiveness. 

  

                                                             
5 http://www.w3.org/2005/Incubator/urw3/XGR-urw3/#speakers 



1 0  | W 3 C ’ s  U n c e r t a i n t y  O n t o l o g y  
 

 

Figure 8: W3C's Uncertainty ontology



1 1  | W 3 C ’ s  U n c e r t a i n t y  O n t o l o g y  
 

Figure 8 displays the W3C's Uncertainty ontology. It is a synopsis of the figures provided by the W3C, 

adjusted to fit the design of this thesis. The original figures can be found in  [11]. Note that no short-cuts for 

namespaces are used in this illustration because everything is from the same namespace, the UN. 

The concept of a Sentence said by someone, said about something and having some Uncertainty is the core 

of UN. Furthermore an Uncertainty has Uncertainty-Derivation, -Type, -Model and -Nature.  

The UncertaintyDerivation specifies weather the Uncertainty is derived Objective or Subjective that is in a 

formal way or in some kind of subjective judgement or guess.  

The UncertaintyType gives information whether the uncertainty is due to an Ambiguity, Randomness (which 

is a subclass of Empirical), Vagueness, Inconsistency or Incompleteness of the information or the terms in the 

sentence and the world it is said about.  

The UncertaintyNature is either Aleatory meaning that it is a property of the world or Epistemic meaning 

that the uncertainty is a consequence of the agent’s lack of knowledge. 

The UncertaintyModel is the underlying mathematical theory as for example: Probability, Fuzzy Sets, etc. (a 

couple of theories are introduced in section 3).  

These are all the segments of the UN. 

Since this model is of a very generic nature, it can easily be adapted for more specific use as it is done with 

NMO. 

NMO has a slightly different use of the class Coin and the property hasMint than previous examples. In NMO 

there is another class type_series_item, used to describe a coin type. The class Coin (in NMO) consists of 

individual Coins assigned to a type_series_item. This type_series_item describes all the features that Coins 

assigned to it have in common. Thus the property hasMint in NMO is not intended to connect a Coin with a 

Mint but a type_series_item with a Mint. For example when type_series_item TypeX has Rome as a Mint, all 

Coins assigned to TypeX have the Mint Rome in common. Note that this is only the intentional use of the 

property hasMint. NMO does not apply any domain or range constraints on this property so the property 

could be used in other contexts as well. The Mint nm:rome6 and the uncertainty annotation 

nm:unknown_value7 refer to URIs defined in the nm namespace and are used in coherence with NMO. 

The following use case shows how NMO and UN should be combined (UN + NMO) to model the statement: 

"TypeX has Rome as a Mint but I am uncertain."

                                                             
6 http://nomisma.org/id/rome 
7 http://nomisma.org/id/unknown_value 



1 2  | W 3 C ’ s  U n c e r t a i n t y  O n t o l o g y  
 

Use case: UN + NMO hasMint uncertain 

Description: type_series_item TypeX has Rome as a Mint but I am uncertain. 

Note: The sentence represented by genIDx results from all the properties to and from 
it. 

Used entities: nmo:type_series_item, nmo:mint, un:Sentence, un:Uncertainty 

Used properties:  nmo:hasMint, un:hasUncertainty, rdf:value, rdf:type  

Used generic IDs: Name Description 

genIDx The assertion: TypeX hasMint Rome with the uncertainty 
nmo:uncertain_value. 

 

Depiction:  

In
d

iv
id

u
al

s
n

m
o

u
n

type_series_item mint

rdf:valuenmo:hasMint

un:hasUncertainty

Sentence Uncertaintyun:hasUncertainty

 
 

Figure 9: Use case UN + NMO 

The type_series_item has Mint genIDx which has the value Rome and the Uncertainty uncertain_value. As 

explained above the generic ID represents a sentence when the context is taken into consideration. 

Therefore genIDx represents the statement that TypeX has Rome as a Mint and this statement has the 

Uncertainty uncertain_value.  

Please be aware that the designation "uncertain_value" is rather badly chosen for this context because it 

refers to a value being uncertain while the Uncertainty ontology refers to a sentence having an uncertainty. 

It was chosen according to an existing naming convention. It would be more intuitive to simply call the 

uncertainty "nmo:uncertain". The reason why it is still called "uncertain_value" is that this designation is 

already in use in a number of systems and it would take a lot of work changing it. Pretty much everything 

that can be seen as an uncertainty can be chosen instead of the nmo:uncertain_value used here. Gradations 

of different uncertainties such as "unlikely", "possibly true", "likely", etc. and even simple percentages or 

decimals representing a probability are thinkable.  



1 3  | W 3 C ’ s  U n c e r t a i n t y  O n t o l o g y  
 

This model can be seen as following the information addition pattern introduced before, because the 

generic ID can be taken as a representation of the property connecting TypeX to the Mint Rome to facilitate 

that some information, to be precise the uncertainty, can be added to the relation. 

On first sight it is clear that only the essence of the W3C's ontology is used to model the uncertainty with 

NMO. This use case is based on numismatic terms and especially on the fashion of how and what 

information was stored by nomisma.org. Up to now regarding uncertainties nomisma.org only describes the 

fact that some information is uncertain but does not go into greater detail. This is the reason why this use 

case does not go into greater detail either. Of course the rest of the Uncertainty Ontology could be used to 

express such greater detail as for example the uncertainty type or derivation.  

Since the use case shows how the two ontologies can be connected by representing a Sentence with a 

generic ID, all the features of Uncertainty Ontology can easily be made use of. 



1 4  | C I D O C  C R M  
 

2.2. International Council of Museums Conceptual Reference Model 
In this section the CIDOC (French: Comité international pour la documentation) Conceptual Reference Model 

(CRM) [14] is introduced and explained with a couple of use cases. Furthermore problems and fixes stated by 

the Ontotext Research Space8 are addressed.  

CRM uses a naming convention that attaches the prefix EX to entities and PX to properties, where X is a 

number. 

CIDOC CRM follows an event driven modelling approach. 
In addition to some attribute connecting two entities (E1 CRM Entities), the event of the attribute 

assignment is captured in an own entity. This so called "E13 Attribute Assignment" has the properties "P141 

assigned attribute to", pointing to the entity to which an attribute is assigned and "P140 assigned" pointing 

to the entity which represents the value assigned by the attribute. 

cr
m

E1 CRM Entity E1 CRM Entity

E13 Attribute 
Assignment

any property

P140 assigned attribute to P141 assigned

E5 Event

E7 Activity

 

Figure 10: CRM Attribute Assignment 

Figure 10 shows the CRMs attribute assignment. Note that an Attribute Assignment is an Activity which again 

is an Event.  

Capturing the assignment of the attribute in an entity rather than only using a property can be mapped to 

the Information addition pattern. Because the formerly binary relation of the property connecting two 

entities is embodied by an entity and two properties, it can be extended by any number of participating 

entities (or individuals), i.e. Information.  

                                                             
8 https://confluence.ontotext.com/display/ResearchSpace/Home 



1 5  | C I D O C  C R M  
 

cr
m

ex
p

E1 CRM Entity E1 CRM Entityany property

P140 assigned attribute to P141 assigned

E5 Event

E7 Activity

Mint

Minting

Coin

exp:minted

exp:hasMint

exp:minted at

E13 Attribute 
Assignment

 

Figure 11: Attribute Assignment extended 

Figure 11 shows how CRM and the example used up to now can be combined to model the fact that some 

Coin was minted at some Mint. Both Mint and Coin are subclasses of E1 CRM Entity and Minting is a subclass 

of E13 Attribute Assignment, while minted and minted at are sub-properties of P140 assigned attribute to 

respectively P141 assigned, following the CRMs recommendation of all extensions being sub-properties or 

sub-classes of CRM properties or classes.  

The link between Coin and Mint is established in two ways. The Attribute Assignment Minting describes the 

Activity or Event of a Coin being minted and links it to the Mint where it was minted at. The property 

hasMint links the Coin directly to the Mint.   

Here is a full use case on how "CoinX has Rome as a Mint" can be modelled using CRM.



1 6  | C I D O C  C R M  
 

Use Case: CRM hasMint 

Description: CoinX has Rome as a Mint. 

Used Entities: exp:Coin, exp:Mint, exp:Minting, crm:E1 CRM Entity, crm:E13 Attribute 
Assignment, crm:E7 Activity, crm:E5 Event 

Used Properties: exp:minted, exp:minted at, exp:hasMint, crm:P140 assigned attribute to, 
crm:P141 assigned, rdf:subProperyOf, rdf:subClassOf, rdf:type  

Used generic IDs: Name Description 

genIDx The Minting of CoinX at Rome 
 

Depiction:  

cr
m

e
xp

In
di

vi
d

ua
ls

E1 CRM Entity E1 CRM Entityany property

P140 assigned attribute to P141 assigned

E5 Event

E7 Activity

Mint

Minting

Coin

exp:minted

exp:hasMint

exp:minted at

E13 Attribute 
Assignment

exp:hasMint

exp:minted exp:minted at

 
Figure 12: Use case CRM hasMint 

 

 



1 7  | C I D O C  C R M  
 

As stated in [15] the attribute assignment is a longer path to the actual property, which in turn can be seen 

as a short-cut to the longer path (long-cut). The long-cut's benefit is a broader capability of expression 

because it can easily be extended by additional information. Information addition is done by appending 

properties to the attribute assignment. This is compliant with the W3C’s information addition pattern, with a 

slight but not unimportant difference. That is, that the binary property is kept as short-cut, thus leaving a 

path to bypass the extended information. As said before, the information addition can be used to add any 

number of information to the relation in question.  

In the following Use Case the CRM Property P33 used specific technique is used to model the fact that “CoinX 

has Rome as Mint and struck as Manufacture"(the use of Manufacture and struck9 is also leaned on to the 

uses in NMO).  

Use Case: CRM Manufacture 

Description: CoinX has Rome as a Mint and Struck as Manufacture. 

Note: exp:Minting now is domain to the property exp:hasManufacture, which is used as 

sub-property of crm:P33 used specific technique. This is valid because exp:Minting is 

indirectly (via crm:E13 Attribute Assignment) a subclass of crm:E7 Activity and P33 

has E7 as a domain. 

Used Entities: exp:Manufacture, crm:E29 Design or Procedure, exp:Coin, exp:Mint, exp:Minting, 
crm:E1 CRM Entity, crm:E13 Attribute Assignment, crm:E7 Activity, crm:E5 Event 

Used 
Properties: 

exp:hasManufacture, crm:P33 used specific technique, exp:minted, exp:minted at, 
exp:hasMint, crm:P140 assigned attribute to, crm:P141 assigned, rdf:subProperyOf, 
rdf:subClassOf, rdf:type 

Used generic 
IDs: 

Name Description 

genIDx The Minting of CoinX being minted at Rome with the technique of 
manufacture struck 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
9 http://nomisma.org/id/struck 



1 8  | C I D O C  C R M  
 

Depiction:  
cr

m
ex

p
In

di
vi

d
ua

ls

any property

P140 assigned attribute to P141 assigned

exp:minted

exp:hasMint

exp:minted at

exp:hasMint

exp:minted

exp:hasManufacture

P33 used specific technique

E1 CRM Entity E1 CRM Entity

E5 Event

E7 Activity

MintCoin

E13 Attribute 
Assignment

exp:minted at

Minting

E29 Design or 
Procedure

Manufacture
exp:hasManufacture

 
Figure 13: Use case CRM Manufacture 

In [15] the authors point out a couple of problems regarding the CRM's attribute assignment. One of those 

problems is that the "fully-articulated path" [15] (called long-cut) does not always imply an instance of the 

corresponding short-cut property as it is claimed by the CRM. They also bring the very good example, that a 

long-cut may contain information about the status of the attribute assignment such as "Formerly Thought To 

Be (i.e. not currently considered true)" [15] while the short-cut lacks the capability of expressing the status 

and should be considered true. In this case the long-cut does not actually imply the short-cut. 

 
Another problem is that the attribute assignment (long-cut) is not directly linked to the corresponding 

property (short-cut). When the same two individuals are connected with more than one short-cut, and there 

is a long-cut also linking these individuals, it is unclear which one of the short-cuts corresponds with the 

long-cut. Now when additional information is added via the long-cut, it is unclear to which one of the short-

cuts this information belongs. 



1 9  | C I D O C  C R M  
 

One can easily imagine an analogue problematic when adding some degree of uncertainty to the long-cut. 

This could result in the problem that a statement is falsely considered certain when following the short-cut, 

although it is meant to be uncertain and vice versa. 

The Ontotext Research Space published a model of uncertainty [16] (namespace: bmo) using the CIDOC-

CRM. In this publication the property PX likelihood links an uncertainty (of type E55 Type) to some EX 

Association. EX Association being a subclass of Attribute Assignment captures the event of associating 

something with something else in the same manner as the Attribute Assignment does. This is similar to the 

way the Minting is implemented in the above example and comes with the same problems. To cope with the 

latter of the above problems the long-cut is assigned to the short-cut via PX property connecting the EX 

Association to the corresponding property. An example of the problem and how PX property solves it can be 

found in Appendix B.  

So what happens is nothing else but a long-cut via the EX Association is extended by some likelihood. The 

corresponding short-cut does not hold the information about the likelihood which is solely attached to the 

long-cut. 

The following use case shows how CRM and the Ontotext Research Space’s work can be combined to model 

the fact that "type series item CoinX has Rome as Mint but I am uncertain". 

Use Case: CRM & BMO uncertain 

Description: CoinX has Rome as a Mint but I am uncertain. 

Note: Minting is a sub-class of bmo:EX Association which is similar to (and sub-class of) 
crm:E13 Attribute Assignment. The property bmo:PX likelihood is used similar to 
exp:hasManufacture in the use case "CRM Manufacture" and extends the long-
cut  (Attribute Association) by some likelihood as additional information. 

Used Entities: crm:E55 Type, bmo:EX Association, exp:Coin, exp:Mint, exp:Minting, crm:E1 CRM 
Entity, crm:E13 Attribute Assignment, crm:E7 Activity, crm:E5 Event 

Used Properties: bmo:PX likelihood, bmo: PX property, exp:minted, exp:minted at, exp:hasMint, 
crm:P140 assigned attribute to, crm:P141 assigned, rdf:subProperyOf, 
rdf:subClassOf, rdf:type 

Used generic IDs: Name Description 

genIDx The Minting of CoinX at Rome with the likelihood uncertain 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



2 0  | C I D O C  C R M  
 

Depiction: 
cr

m
ex

p
In

d
iv

id
u

al
s

b
m

o

any property

P140 assigned attribute to P141 assigned

exp:minted

exp:hasMint

exp:minted at

exp:hasMint

exp:minted

bmo:PX likelihood

bmo:PX likelihood

bmo:PX property

E1 CRM Entity E1 CRM Entity

E5 Event

E7 Activity

MintCoin

E13 Attribute 
Assignment

exp:minted at

Minting

E55 Type

EX Association

 
Figure 14: Use case CRM & BM uncertain 

Simply put this model uses the information addition pattern (as it was previously shown on the example on 

the technique of manufacture) to extend the long-cut of a property by some likelihood. The likelihood 

attribute points out, to what likelihood the statement annotated by the attribute assertion respectively the 

attribute, can be considered true. For this example the likelihood "uncertain" means that the assrtion that 

CoinX was minted at Rome is uncertain to turn out true.

 

 



2 1  | U n c e r t a i n t y  F r a m e w o r k  
 

2.3. Uncertainty Framework 
This section describes how “a pattern-based Framework for Uncertainty Representation in ontologies” 

(called uncertainty framework in this thesis) as it is presented in [17] can be used to model uncertainty. The 

key principle of this framework is to strictly separate ontologies handling uncertainties from those which do 

not hold any kind of uncertainty and especially in this point it differs from the previously discussed models. 

By separating the ontologies and building different layers of base and uncertainty ontologies, this framework 

works not only with the modeling but also with the architecture of ontologies to reach certain advantages.  

The uncertainty part of the framework is founded on fuzzy theory. In fuzzy theory an individual can be in 

some class to some degree of certainty or in some relation with another Individual to some degree of 

certainty. These ideas are used to build an ontology containing uncertainties either on top of an already 

existing ontology or from scratch by following a simple pattern.  

Here is how it is done:   

 𝐿𝑒𝑡 ⋈∈ {≤, <,  ≥, >} 𝑎𝑛𝑑 𝑛 ∈ [0,1]  

2.3.1. Fuzzy instantiation 

If the base ontology has information of some individual 𝑎 being an instance of a class 𝐶 and some degree of 

uncertainty shall be attached, in a fuzzy manner this is expressed as follows: 

⟨𝑎: 𝐶 ⋈ 𝑛⟩ 

Stating that individual a is in class C with certainty ⋈ 𝑛.  

To hold the degree of uncertainty the framework adds a fuzzy-instantiation node and links it to the class 𝐶, 

the instance 𝑎 and the corresponding type ⋈ and value 𝑛 of the uncertainty degree.  

In
d

iv
id

ua
ls

Fu
zz

y 
ad

d
-o

n
 p

at
te

rn

B
as

e
 

o
n

to
lo

gy
In

d
iv

id
ua

ls
Fu

zz
y 

ad
d

-o
n

 p
at

te
rn

B
as

e 
o

n
to

lo
gy

C1

f-value

f-type

fuzzy-relation fuzzy-type
fi-class

fi-instance

 

Figure 15: Fuzzy instantiation 

Figure 15 shows how the fuzzy instantiation pattern adds the fuzzy-instantiation node fi-instance-1. It is 

similar to the usage of generic IDs in previous sections. The fuzzy instantiation has the property fi-instance 

pointing to the individual a that is instance of the class C pointed to by the property fi-class. Additionally it 

has the property f-type pointing to the fuzzy-type ⋈ and the property f-value pointing to the real value n. 



2 2  | U n c e r t a i n t y  F r a m e w o r k  
 

The combination of f-type and f-value shapes the degree of certainty. Note that there is no namespace 

specified for the fuzzy add-on pattern. 

2.3.2. Fuzzy relations 

If the base ontology has information of some individual 𝑎 being in a relation 𝑅 with another individual 𝑏 and 

some degree of uncertainty shall be attached, in a fuzzy manner this is expressed as follows:  

⟨(𝑎, 𝑏): 𝑅 ⋈ 𝑛⟩ 

Stating that individuals a and b are in relation with certainty ⋈ 𝑛. 

Similar to the above pattern, the framework adds a fuzzy-relation node and links it to the individuals a and 𝑏, 

the relation R between them and the corresponding type ⋈ and value n of the uncertainty degree. 

In
d

iv
id

u
a

ls
Fu

zz
y 

ad
d

-o
n

 p
at

te
rn

B
as

e 
o

n
to

lo
gy

fr-instance-s

C1 C2

 f-value f-type

fr-instance-o fr-property

R

fuzzy-relation fuzzy-type

 

Figure 16: Fuzzy relation 

Figure 16 shows how the fuzzy relation pattern adds the fuzzy-relation fr-instance-1 with the properties fr-

instance-o, fr-property and fr-instance-s pointing to the object a property (predicate) 𝑅 and subject b of the 

assertion that 𝑎 is in relation R with b. Like the fuzzy-instantiation (in the previous pattern) the fuzzy-relation 

also points to the type ⋈ and value n building the degree of uncertainty. 

The core is to add an individual which in case of fuzzy theory is an instance of fuzzy-relation to embody the 

relation R between a and b. Information as the value and type of the probability can that be attached to this 

individual. This is as the use of UN and CRM have been before, compliant with the W3C’s information 

addition pattern. Representations of other mathematic theories as for example probabilistic logic can be 

implemented in a similar way.  

Note that in both cases there is a severe separation between the base ontology and the fuzzy add-on 

patterns. Thus these patterns can be used to either build the fuzzy ontology on top of an existing base 

ontology without having to adjust it, or to build up a base and fuzzy ontology simultaneously. 

Although the framework is presented on the example of fuzzy sets as model of uncertainty it is not limited to 

it. Also the cut between the ontologies leads to the feature that different models of uncertainty can be used 

for one and the same base ontology without having to adjust or interfere with it.  

For instance if there is a base ontology with no uncertainties and a fuzzy-ontology built on top according to 

the above patterns, the patterns can easily be used again to build another ontology, as for example one 

using probabilistic logic to represent uncertainties, on top of the base ontology. The result is one base 



2 3  | U n c e r t a i n t y  F r a m e w o r k  
 

ontology with two ontologies containing uncertainties with different types of representation, subsuming in 

one ontology (consisting of three) holding different uncertainties.  

Base 
ontology

Fuzzy 
ontology

Probability 
ontology

 

Figure 17: Multi-uncertainty ontology 

This illustration (Figure 17) shows an ontology consisting of three others and holding different uncertainty 

models. This figure is adjusted to fit the design of this thesis. Please refer to [17] for the original.  

Of course it is questionable whether there are reasons to hold different uncertainty models parallel to each 

other but it is possible. 

Since the architecture of the resulting ontologies is of a strictly modular nature the advantages of the base 

ontology, as its compatibility with DL reasoning tools and other software that was conceived for it, survives 

the uncertainty addition.  

Another advantage due to the modularity of the ontology architecture is that each ontology follows an 

appropriate pattern and embodies an isolated module, so that each ontology can have their own specialized 

reasoners (and other software) working on them. The architecture supports uncertainty reasoning and 

maintains the ability of crisp reasoning. 

Standard 
concept

Probabilistic 
pattern

Base 
ontology

Fuzzy 
ontology

Fuzzy 
pattern

Probability 
ontology

Crisp 
reasoner

Probabilistic 
Reasoner

Fuzzy 
Reasoner

 

Figure 18: Modular architecture 



2 4  | U n c e r t a i n t y  F r a m e w o r k  
 

Figure 18 illustrates the modular architecture and reasoning with multiple specialized reasoners. Again this 

figure is adjusted to fit the design of this thesis. Please refer to [17] for the original.  

To give an example with some “real” data here is how the uncertainty framework can be used to model the 

assertion that: "CoinX has Rome as a Mint with degree of certainty ≥ 0.8." 

Use Case: Uncertainty Framework 

Description: CoinX has Rome as a Mint with degree of certainty ≥ 0.8. 

Note: There is no namespace specified for the fuzzy add-on pattern and fr-instance-x is 
used similar to generic IDs in previous use cases. 

Used Entities: exp:Coin, exp:Mint, exp:Minting, fuzzy-relation, fuzzy-type 

Used Properties:  f-value, f-type, fr-instance-o, fr-property, fr-instance-s, exp:hasMint, 
rdf:subProperyOf, rdf:subClassOf, rdf:type 

Depiction: 

In
d

iv
id

ua
ls

Fu
zz

y 
ad

d
-o

n
 p

at
te

rn

B
as

e
 

o
n

to
lo

gy
In

d
iv

id
u

a
ls

Fu
zz

y 
ad

d
-o

n
 p

at
te

rn
e

xp

fr-instance-s

Coin Mint

f-value f-type

fr-instance-o fr-property

exp:hasMint

fuzzy-relation fuzzy-type

 
 

Figure 19: Uncertainty framework example



2 5  | C o m p a r i n g  m o d e l i n g  a p p r o a c h e s  
 

2.4. Comparing modeling approaches 
When comparing the three models above, it soon is obvious that all of them follow the W3C’s information 

addition pattern by instantiating a property with an individual and attaching some representation of 

uncertainty to it. UN uses sentence, CRM uses attribute assignment and the uncertainty framework uses, at 

least in the given example, fuzzy-relation to embody a relation between two entities.  

Each of the three suggest a method of appending uncertainty to a relation and only UN suggests a way of 

representing the uncertainty itself. Since each method is of a very generic nature, an ontology designer 

making use of these methods is barely limited in his freedom of modeling the uncertainty itself. Even though 

UN gives a suggestion how Derivation, Type, Model and Nature of the uncertainty can be captured this 

approach still grants a great degree of freedom of modeling the uncertainty. The uncertainty framework 

gives an example showing how fuzzy theory could describe the uncertainty but clearly states that this is only 

an example of how the framework could be used and that it could be used for different representations of 

uncertainty as well.  

There are, however, a couple of differences in the handling of properties. In both CRM and the uncertainty 

framework, the property of interest, in the above examples the property hasMint, is still used to link two 

individuals in sense of the property. Meaning that hasMint still links CoinX to Rome after the addition of 

uncertainty. This is contrary to the way the property is used in the combination of NMO and UN where 

hasMint now points not to the actual Mint Rome but to the generic ID representing the relation, so that 

there is no direct link between CoinX and Rome. 

In short CRM and the uncertainty framework keep the property as a short-cut between the individuals 

(CoinX and Rome) and build up a long-cut on top of it via a new individual with an uncertainty attached. 

Whereas NMO + UN uses the property to build the long-cut via a new individual and has no short-cut. 

When someone, or some program for that matter, processes the CRM model or the uncertainty framework, 

with the aim to find the Mint for CoinX, first CoinX is visited. Then since there is a relation to the mint Rome 

with the property (short-cut) hasMint, this path could be followed and the Mint found, without encountering 

the uncertainty at all, because it only attached to the long-cut. Since the link between CoinX and Rome is 

established it could falsely be interpreted as true or certain. This means that the processor must be advised 

to look for long paths and take these instead of the seemingly more attractive (in terms of finding the Mint) 

short-cut.  

When the UN + NMO model is processed, following the property hasMint would lead from CoinX to a generic 

ID with the value Rome and some uncertainty attached. The fact of encountering a generic ID rather than a 

mint could be taken as signal that there is more to the relation between CoinX and Rome. This signal could 

be used to trigger a search for additional information starting from the generic ID and resulting in the finding 

of the uncertainty. This means that all three models need differently natured software to process the 

uncertainties. 

At first sight the next difference lies in the direction of the properties. In CRM and the uncertainty 

framework, long-cut is established with two properties pointing from the relation embodying individual to 

the relations participants or in terms of RDF triples from the predicate to the subject and the object. In UN + 

NMO the subject points to the predicate which in turn points to the object. The latter makes a more intuitive 

impression. Anyhow the properties of CRM usually have complements pointing in the other direction and 

with the same point of expression. For example “P140 assigned attribute to” has the complement “was 

attributed by”. The uncertainty framework leaves room for such bidirectional connection as well. Therefore 

this is not actually a difference of relevance. 



2 6  | C o m p a r i n g  m o d e l i n g  a p p r o a c h e s  
 

What is a great difference regarding the properties, is the number of properties used.  

To add uncertainties to an ontology, each approach has different properties and classes that need to be 

imported and instantiated. The starting point for the upcoming argumentation is an example ontology that 

only has the classes Coin and Mint, the property hasMint, intended (no domain and range restrictions) a Coin 

to a Mint and the individuals CoinX (an instance of Coin) and Rome (an instance of Mint), as in the common 

example in this section and illustrated in Figure 4. In order to add uncertainty to such an ontology using CRM 

it is necessary to import at least 4 classes (E13 Attribute Assignment, E1 CRM Entity, E55 Type, EX 

Association) and optional to create the new class Minting. Furthermore it is necessary to import at least 4 

properties (P140 assigned attribute to, P141 assigned, PX likelihood, PX property) and optional to create the 

new properties minted and minted at. The class Minting and the properties minted and minted at are 

optional, because it is also possible to model the relation between CoinX and Rome on the more general 

level of EX Association and using the more general properties P140 assigned attribute to and P141 assigned, 

of which minted and minted at would be sub-properties. The decision whether to implement these extra 

properties and class is a task of balancing expressiveness with ontology growth. For this regard the best case 

in sense of keeping the ontology small, which is not adding the optional elements is considered. Given the 

necessary imports, for each uncertainty added, on the individual level the two individuals uncertain and 

genIDx (where x is a changing number to create distinct generic IDs) need to be added as well as the 

property assertions corresponding to the four mentioned properties. Note that when adding multiple 

uncertainties an individual like “uncertain” could of course be reused when the same uncertainty is needed 

for different attribute assertions. 

To maintain fairness and comparability, it is necessary to point out that the example given with the 

framework uses fuzzy logic to model uncertainty and thus represents it with the two properties f-value and 

f-type and the individuals they point to. In CRM only the one property likelihood with the individual and in 

UN + NMO only the one property hasUncertainty with the individual uncertain_value is used. These are 

different representations of uncertainties and come with different amounts of expressiveness. In any case 

none of the above states that uncertainties should be expressed in theire manner so that any representation 

is thinkable (for example also UN provides a greater model to describe the uncertainty). This is why the one 

property and individual that the uncertainty frameworks example has more than CRM and UN + NMO 

examples must not be considered when comparing the growth of the ontologies. 

Again starting from the relatively simple example ontology, adding uncertainties according to the 

uncertainty framework (precisely the given fuzzy add-on example) is quite similar to CRM. The two classes 

fuzzy-relation and fuzzy-type as well as the five (four, regarding the above statement of comparability) 

properties f-value, f-type, fr-instance-o, fr-property, fr-instance-s, need to be imported. Given the necessary 

imports, for each uncertainty added, on the individual level the three (two) individuals 0.8 (which is a data 

value), ≤ and fr-instnace-x need to be added as well as the property assertions corresponding to the five 

(four) mentioned properties. Note that when adding multiple uncertainties an individual like ≤ could be 

reused. 

The number of properties and individuals is different for UN in the way it is used with NMO. 

Again starting from the example ontology, adding uncertainties according to UN as it is used with NMO 

raises the necessity to import the two classes Sentence and Uncertainty as well as the property 

hasUncertainty. The property rdf:value can be considered usable without explicit import because it is part of 

the RDF which is the basis of any ontology. Given the necessary imports, for each uncertainty added, on the 

individual level the two individuals uncertain and genIDx need to be added. This is similar to CRM and the 

uncertainty framework (regarding the statement of comparability), but only two property assertions must be 

added, one for hasUncertainty and one for rdf:value. Furthermore the property hasMint must be redirected 

to point to genIDx. Note that this would not be all that simple, when the property had domain and range 



2 7  | C o m p a r i n g  m o d e l i n g  a p p r o a c h e s  
 

restrictions. Again when adding multiple uncertainties an individual like “uncertain_value” could of course 

be reused when the same uncertainty is needed in different situations.  

In sum it is remarkable that while CRM (and the uncertainty framework similarly) needs to import four new 

properties, and add four new property assertions, the approach using UN needs only to import one property 

and add two property assertions. This means that for each uncertainty added the graph of an ontology using 

CRM (or uncertainty framework) grows strikingly stronger than a similar ontology using the UN approach, 

which is a strong argument to the benefit of the UN approach as it is used with NMO.  

This benefit comes at the cost that the property in question (here hasMint) needs to be redirected. This can 

turn out to be rather complicated due to possible domain and range restrictions. After redirection the 

property points not to a Mint but to a generic ID. Software used on such an ontology needs to work correctly 

when encountering such a generic ID as described previously and needs to be adjusted to the new situation 

too. These points make it hard to add uncertainties using the UN (+NMO) approach to an already existing 

ontology. This implies that the UN approach is especially useful when considered in the conception of a new 

ontology, when its features are regarded from start on, while it complicates things when trying to extend 

existing ontologies with uncertainties and has the benefit that uncertainties are not easily bypassed. 

Contrary to that, NMO and the uncertainty framework can easily be used to extend existing ontologies with 

uncertainties but with the negative point that uncertainties can be bypassed and thus uncertain data could 

be worked with, assuming it is certain and without knowing that it is uncertain. 

Another distinctive feature lies in the used ontologies themselves. UN is an ontology recommended by the 

W3C and intends to supply a standardized representation of uncertainty that can be used throughout the 

Semantic Web. It has the power to combine representations of different mathematical theory based 

ontologies. Since the W3C is the instance to standardize Semantic Web features, it cannot be bad following 

these suggestions.  

The CRM also intends to provide a standardized ontology but addresses primarily the features needed “to 

facilitate the integration, mediation and interchange of heterogeneous cultural heritage information” [14]. 

Also it needs to be clear that addition of uncertainty is not (yet) part of the CRM but was only proposed to be 

taken into the CRM by the Ontotext Research Space [16]. The problems pointed out in section 2.2. are real 

but solutions are being worked on. However UN has not been updated since March 2008, while CRM has 

been in development for more than a decade and still is vibrant. The latest official release of the CRM was 

published in January 2014. 

Neither CRM nor UN provide the modularity that is thought of by the uncertainty framework. 

It is thinkable to implement modularity with these ontologies anyway by splitting the ontologies in one with 

and one without uncertainty. This would result in an even greater resemblance with the uncertainty 

framework and one could say that they actually follow the terms of the framework. 

The modularity splitting uncertainty loaded ontologies from base ontologies comes with all the benefits 

mentioned in 2.3 but also with the disadvantage that when only viewing the base ontology all facts will be 

taken certain although they might be weighted with some degree of belief in the other ontology. 

Granted that separate reasoning is made possible by modularity as described in 2.3., it remains doubtful if 

separate reasoning makes sense.  

None of these approaches proposes a way of inference, reasoning or joining of uncertainty knowledge bases. 



2 8  | M a t h e m a t i c a l  a p p r o a c h e s  
 

3. Mathematical approaches 
The previous section described approaches to modeling uncertainty in ontologies that made use of RDF and 

OWL as description languages for ontologies and thereby focused on modeling with existing tools. This 

section gives an overview on ways to handle uncertainties using different mathematical theories and some 

of them even attempt to extend existing tools. Such mathematical theories usually refer to uncertainty 

either as subjective or objective view on Bayesian probabilities. Bayesian probability interprets a probability 

as a degree of belief or (un)certainty. The subjective point of view says that a probability denotes some 

degree of personal (subjective) belief and the objective point of view says that a probability results from 

rationality and consistency of Bayesian statistics and is not distorted by any personal belief value [18]. The 

Bayesian interpretation of probability was already used in section 1.3 where fuzzy logic attached some 

degree of belief or probability i.e. certainty to relations and instantiations. In all of the following 

mathematical theories, probability is a measurement for (un) certainty.

 

3.1. BayesOWL 
This section describes an approach to uncertainties in ontologies based on Bayesian Networks called 

BayesOWL, presented in [19]. 

The main Idea of BayesOWL is to extend OWL in order to support Bayesian Networks (BN) and with them 

annotation of probability.  BNs are a way to represent conditional dependencies with a graph that is 

directional and acyclic.  A node in a BN annotates a random variable. Each directional edge from some node 

𝑏 to another node a annotates that 𝑎 is conditionally dependent from 𝑏, meaning that the value of the 

random variable annotated by 𝑏 has an influence on the outcome of the variable annotated by 𝑏. Of course 

there can be more than one edge pointing (from different nodes) to 𝑎 so that 𝑎's variable is conditionally 

dependent from all the variables represented by the parent node’s of 𝑎.  Furthermore each node has a 

probabilistic function that determines the probability of the nodes variable regarding all its conditional 

dependencies. When a node has no parent, the corresponding probability is not a conditional probability but 

simply the probability of the represented variable, namely the prior probability. 

These probabilistic functions can be represented by conditional probability tables, which list the probability 

of all combinations of the variable’s value and the values of all the parent variables. 

b c

a

P(c)P(b)

P(a|b,c)
 

Figure 20: Bayesian Network 

This graph (Figure 20) shows a Bayesian Network with a node for the random variable 𝑏 (c) with no parents 

and the prior probability 𝑃(𝑏) (𝑃(𝑐)). The node for the random variable 𝑎 has the parents 𝑏 and 𝑐, and the 

conditional probability 𝑃(𝑎|𝑏, 𝑐). An example with some data and conditional probability tables is given in 

Appendix C. 

This form of annotating random variables, their conditional dependencies and probability distributions is 

attractive to combine with ontologies mainly because inference in BNs and learning of BNs is not only 



2 9  | B a y e s O W L  
 

possible, it can be done with efficient algorithms. Another reason is the viewable resemblance to graph 

representations of RDF triples. 

BayesOWL provides a method of encoding these forms of probabilities and conditional dependencies in 

ontologies. At that it focuses on class membership statements and is limited to them while properties and 

assertion statements still lack a BN encoding.  

3.1.1. Prior Probability 
With the intention of encoding class memberships, a prior probability 𝑃(𝑐) = 𝑥 can be interpreted as “the 

prior probability that an arbitrary individual belongs to class C [..]” [19]. The random binary variable 𝑐 

describes the event that some individual belongs to class 𝐶. 

In order to model such a prior probability 𝑃(𝑐) = 𝑥, the classes Variable and PriorProb are introduced. 

In
d

iv
id

ua
ls

Fu
zz

y 
ad

d
-o

n
 p

at
te

rn

B
as

e
 

o
n

to
lo

gy
In

di
vi

d
ua

ls
B

ay
es

O
W

L

PriorProb

hasProbValue

hasClass

Variable

hasState

hasVariable

C

 

Figure 21: Prior probability 

PriorProb 𝑃(𝑐) is the probability that the random variable 𝑐, that describes the event of an arbitrary 

individual (any individual in the ontology) is part of class 𝐶, has the state true. This probability has the 

probability value 𝑥. 

As illustrated in Figure 21, an instance of Variable represents the random binary variable 𝑐 that describes the 

event of an arbitrary individual belonging to the class C pointed to by the property hasClass. It also has the 

property hasState pointing to either true or false, meaning that an individual belongs to C  (true) or does not 

belong to C  (false) with probability 𝑃(𝑐) (respectively 𝑃(𝑐̅)). An instance of PriorProb represents the actual 

prior probability and points to the Variable c with the property hasVariable and to some value 𝑥 where 𝑥 ∈

[0,1] as common in probabilistic theory. 

Note that no short-cuts for namespaces are used in the illustration of this section because everything is from 

the same source, namely BayesOWL which is not actually a namespace. BayesOWL proposes an extension to 

the OWL namespace. Therefore the namespace short-cut owl would be the best choice for the illustrations. 

However BayesOWL is not (yet) a part of owl namespace thus the namespace owl would not exactly be 

correct. To clarify that BayesOWL is (still) something else than OWL, no namespace is specified.  

3.1.2. Conditional Probability 

A conditional probability 𝑃(𝑐|𝑝1, 𝑝2,  𝑝3) = 𝑥  can be interpreted as “the conditional probability that an 

individual of the intersection class of P1, P2, and P3 also belongs to class C[..]” [19]. In other words the 



3 0  | B a y e s O W L  
 

probability that an individual belongs to class 𝐶, given it belongs to class 𝑃1, 𝑃2, and 𝑃3. In order to model 

such a conditional probability the class CondProb is introduced and the class Variable is reused like above. 

In
di

vi
d

ua
ls

B
ay

es
O

W
L

CondProb

hasProbValue

hasClass

hasState

hasVariable

Variable

C P1 P2 P3

hasClass hasClass

hasState hasState hasStatehasCondition

 

Figure 22: Conditional Probability 

 

An instance of CondProb represents a conditional probability and points to the random binary variable 𝑐 in 

question and some value 𝑥 with the properties hasVariable and hasProbValue similar to the above described 

PriorProb. Furthermore it has at least one property hasCondition, pointing to the random binary variable p1 

(p2, p3) that in turn is linked to the corresponding state and class P1 (P2, P3) and represents the given 

condition(s).  

Also given in [19] is  a set of rules on how to convert the OWL-model to a BN including rules for common 

OWL class axioms  "intersectionOf", "unionOf", "complementOf", "equivalent-Class" and "disjointWith", as 

well as an algorithm to construct the CPTs for the resulting BN, to complete the representation of Class 

membership statements using BNs. 

Please note that other than using the original namespace of owl there is no great difference between 

extending owl and making combined use of multiple ontologies, if of course the existing syntax and 

semantics are not touched by the extension. Since OWL is a W3C standard, the extension by the classes 

introduced in BayesOWL would declare them standard as well. Other than that there seems to be no reason 

to declare them part of OWL rather than part of an ontology that can be used to model uncertainties with 

Bayesian Networks, comparable to the way the W3C Uncertainty ontology does not extend OWL but 

provides a way to model uncertainties. 

BayesOWL runs in a completely different direction from CRM and UN approaches, because it applies 

probabilities (or uncertainties) of any individual being part of certain classes to the ontology, rather than to 

specific individuals or assertions. Anyway here is an example for an ontology, where the probability of an 

individual being a coin (variable c) is 0.8, the probability of an individual being found together with roman 

coins (variable f) is 0.7 and the probability of an individual being a roman coin (variable r), given it is a coin 

and was found together with roman coins is 0.83. This is solely to give an example on how BayesOWL works 

with some real world terms and all given probabilities and values are made up. The model is illustrated in 

Figure 23:  BayesOWL example. Note that only the positive probabilities are illustrated to retain simplicity. 

Please see Appendix C for the BN. 



3 1  | B a y e s O W L  
 

 

Figure 23:  BayesOWL example



3 2  | F u z z y  O W L  2  
 

3.2. Fuzzy OWL 2 
Fuzzy OWL 2 as it is presented in [20] is an approach to represent fuzzy ontologies using OWL 2. 

As mentioned in section 1.3. the name OWL in this document always refers to the current version OWL 2. 

The reason why Fuzzy OWL 2 explicitly is based on OWL 2 is that in contrast to OWL 1, OWL 2 has “enhanced 

annotation capabilities” [10] supported by so called annotation properties. Fuzzy OWL 2 uses these 

annotation properties to represent and handle fuzzy information in ontologies. 

“While in classical set theory elements either belong to a set or not, in fuzzy set theory elements can belong 

to a set to some degree.” [20] 

Formally this can be expressed by a membership function that returns for each element in a fuzzy set, the 

degree to which the element can be considered part of the fuzzy set. For classical set theory a membership 

function would return either true or false, while in fuzzy set theory it returns a value in the interval [0,1], 

where 0 means no membership and 1 means full(fact). This value is “usually called the degree of truth of the 

statement.” [20] 

In section 2.3. fuzzy instantiation and fuzzy relation are introduced. However Fuzzy OWL 2 follows a 

description logic (𝒮ℛ𝒪ℐ𝒬(𝐷)) that goes further than that. The fuzzy description logic that is the basis of 

Fuzzy OWL2 uses two important elements. To represent these Fuzzy OWL 2 uses the annotation property 

fuzzyLabel. The annotation itself follows an XML syntax. The annotation is nested in the tags <FuzzyOwl2> 

and </FuzzyOwl2> respectively, with an attribute fuzzyType that specifies the tagged element.  

3.2.1. Modifiers 
Modifiers are functions used to modify the membership function of a set.  A modifier is defined by either a 

linear or a triangular function: 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑐), 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑐/(𝑐 + 1), 𝑏 = 1/(𝑐 + 1) 
𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑎, 𝑏, 𝑐) 

For example the modifier 𝑣𝑒𝑟𝑦 [0,1] → [0,1] can be defined as 𝑙𝑖𝑛𝑒𝑎𝑟(0.8).  

In Fuzzy Owl 2, such a modifier is annotated to “an OWL 2 datatype declaration of the type base double” [20] 

and is denoted with the fuzzyOwl2 tag having “modifier” as fuzzyType and with a tag Modifier that in turn 

has the properties type, denoting the function type and the properties a, b, and c denoting the doubles as in 

the above functions. Note that if type is “linear” then the property c is sufficient. The modifier 𝑣𝑒𝑟𝑦 can be 

denoted like this:     

<fuzzyOwl2 fuzzyType=”modifier”>  

 <Modifier type=”linear” c=”0.8”/> 

</fuzzyOwl2> 



3 3  | F u z z y  O W L  2  
 

3.2.2. Fuzzy datatypes 
Fuzzy datatypes are defined over an interval [𝑘1, 𝑘2] ⊆ ℚ, where ℚ is the set of rational numbers and by a 

function that returns a value in the interval [0,1], the degree of a number belonging to this datatype. 

A fuzzy datatype is defined by one of the following functions: 

𝑙𝑒𝑓𝑡𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟(𝑘1, 𝑘2, 𝑎, 𝑏) 

𝑟𝑖𝑔ℎ𝑡𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟(𝑘1, 𝑘2, 𝑎, 𝑏) 

𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑘1, 𝑘2, 𝑎, 𝑏, 𝑐) 

𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙(𝑘1, 𝑘2, 𝑎, 𝑏, 𝑐, 𝑑) 

A fuzzy datatype can also have a modifier applied, making it a fuzzy modified datatype. Figure 24 showa the 

functions mentioned above. The illustrations have been modified to fit the design of this thesis, the original 

illustrations can be found in [20]. 

0 a b c d

1

0 a b c 0 a b

1 1

0 b

1

a 0 a

1

b

1
 

Figure 24: Trapezoidal function; Triangular function; Left-shoulder function; Right-shoulder function; Linear function 

The fuzzy datatype 𝑌𝑜𝑢𝑛𝑔𝐴𝑔𝑒: [0,200] → [0,1] can be defined as 𝑙𝑒𝑓𝑡(0,200, 10,30) 

Any 𝑥 ∈ [0,10] is a YoungAge age, 𝑥 ∈ [30,200] is not a young age and 10 < 𝑥 < 30 is a young Age to some 

degree of truth (that is not true or false). 

In Fuzzy Owl 2 such a fuzzy datatype is annotated to “an OWL 2 datatype declaration of the type base of the 

fuzzy datatype (integer [..] or double [..]),[..]” [20] and is denoted with the fuzzyOwl2 tag having “datatype” 

as fuzzyType and with a tag Datatype that in turn has the properties type, denoting the function type and the 

properties a, b, c and d denoting the doubles as in the above functions. The boarders k1 and k2 can be set 

with xsd:minInclusive and xsd:maxInclusive, which are standard properties so set datatype boarders in OWL, 

and are taken as minimum and maximum value of attributes a, b, c, d respectively if not specified. The fuzzy 

datatype YoungAge can be annotated like this: 

<fuzzy Owl2 fuzzyType=”datatype”>  

 <Datatype type =”leftshoulder” a =”10” b=”30”/> 

</fuzzy Owl2> 



3 4  | F u z z y  O W L  2  
 

The modifier 𝑣𝑒𝑟𝑦 can be applied to the fuzzy datatype building 𝑣𝑒𝑟𝑦(𝑌𝑜𝑢𝑛𝑔𝐴𝑔𝑒). While 20 is a Young Age 

to the degree 0.5, it is a very young age to the degree of approximately 6/9 as illustrated in Figure 25. 

 

0 10

1

3020 0 4/9

1

1

5/9

 

Figure 25: very(YoungAge) 

Having the modifier and fuzzy datatype annotated as above, the fuzzy modified datatype can be annotated 

to the corresponding datatype declaration (of the fuzzy datatype) and is denoted with the fuzzyOwl2 tag 

having “datatype” as fuzzyType and with a tag Datatype (as above) that in turn has the properties type, set 

to “modified”, modifier set to the name of the modifier and base, set to the name of the modified datatype. 

The modified fuzzy datatype 𝑉𝑒𝑟𝑦𝑌𝑜𝑢𝑛𝑔𝐴𝑔𝑒 can be annotated like this: 

<fuzzy Owl2 fuzzyType=”datatype”> 

 <Datatype type =”modified” modifier=”very” base=”YoungAge” />  

</fuzzy Owl2> 

Other than modifiers and fuzzy datatypes the logic that Fuzzy OWL 2 is based on also supports fuzzy concept 

assertion and axioms similar to crisp logic. To stay within the means of this thesis only fuzzy axioms will be 

further described. Please refer to [20] for more information the other elements. 

3.2.3. Fuzzy axioms 
A fuzzy axiom can also be weighted with a degree of truth as for example the role axiom as it is described in 

section 2.3: 

⟨(𝑎, 𝑏): 𝑅 ⋈ 𝑛⟩ 

In Fuzzy OWL 2 such a role axiom is annotated to a role assertion and is denoted with the Fuzzy OWL 2 tag 

having “axiom” as fuzzyType and a tag Degree with the property value specifying the degree of truth 

(respectively certainty) 𝑛. Note that ⋈ is not specified because it is considered as ≥ by default. 

To stick with the example in section 2.3 the statement "CoinX has Rome as a Mint with degree of certainty ≥ 

0.8." can be annotated like this: 

<owl:Axiom> 

 <fuzzyLabel> 

  <fuzzyOwl2 fuzzy Type=”axiom”> 

   <Degree value=”0,8”/>  

  </fuzzyOwl2> 

 </fuzzyLabel> 

 <owl:annotatedSource rdf:resource=”exp:CoinX”/> 

 <owl:annotatedTarget rdf:resource=”exp:CoinX”/>  

 <owl:annotatedProperty rdf:resource=”exp:hasMint”/>  

</owl:Axiom> 



3 5  | F u z z y  O W L  2  
 

At first sight these representations seem rather complicated to apply with common ontology development 

tools as for example Protégé10. Typing the xml annotation and finding the right spot in the ontology code 

every single time promises an uncomfortable mass of errors. Therefore the authors of [20] have published a 

Protégé plugin11 that makes annotating Fuzzy OWL 2 an easy tasks that is done in just a few simple clicks. 

Reasoning with Fuzzy OWL 2 has two points to take note of. On the one hand annotation properties are 

ignored by common OWL reasoners. Thus reasoners can disregard the fuzzy part and reason on a fuzzy 

ontology annotated with Fuzzy OWL 2 as if it were a crisp ontology. On the other hand the authors of [20] 

provide reasoning plugins for Protégé, which can parse fuzzy ontologies into fuzzy logics that can be 

reasoned by known fuzzy reasoners as for example fuzzyDL12 and DeLorean13.  

The striking drawback of Fuzzy OWL 2 is that there is no full reasoning algorithm for the underlying fuzzy 

logic known yet. “Consequently, the parsers only cover the fragments of fuzzy OWL 2 currently supported by 

these reasoners.” [20]

                                                             
10 http://protege.stanford.edu/ 
11 http://gaia.isti.cnr.it/~straccia/software/FuzzyOWL/index.html 
12 http://nemis.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html 
13 http://webdiis.unizar.es/~fbobillo/delorean 



3 6  | U R D F  
 

3.3. URDF 
This section gives an insight into URDF as it is introduced in [12]. Its core intention is to extend the RDF 

language to support probabilistic logic.  

It is interesting to grab the problem of handling uncertainties in ontologies at the RDF level because in this 

way “statements about [..] what it means for an RDF triple or graph to have a probability[..]" [12], inference 

and merging of RDF graphs regarding probabilities can be made. Since OWL is based on RDF in the Semantic 

Web Stack, all changes made to RDF need adjustment of OWL as well.  

Probabilistic logic is a form of expansion of first-order logic such that it is capable of annotating probabilities 

by associating logical formulas with a probability distribution, so called probability constraints. "[..]RDF can 

be seen as a subset of first-order logic" [12], making it easy to compose it with probabilistic logic and result in 

URDF after some slight adjustments.   

𝑃𝑟 ((𝐶𝑜𝑖𝑛𝑋,  h𝑎𝑠𝑀𝑖𝑛𝑡,  𝑅𝑜𝑚𝑒)) ≥ 0.8 

This probability constraint on the (U)RDF triple "CoinX (subject) hasMint (predicate) Rome (object)" is a very 

simple example of how URDF works and states that the probability (or certainty) of CoinX having Rome as 

Mint is greater than or equal to 0.8.  

In RDF and URDF likewise, there must be some limitations made to prevent inconsistency and allow 

complete deduction systems along with efficient inference procedures. For that reason in [12] another 

language is introduced called Subjective URDF, which is much like URDF but with the following prohibitions:  

 no disjunction 

 no negation 

 only lower bound probabilities  

No disjunction and no negation refer to the logical formulas in URDF during which only lower bound 

probabilities refers to the probabilities assigned to such a formula through a probability constraint. 

As said before these restrictions and especially the first two, are similar to restrictions made on RDF. 

RDF has the restriction "that only 'positive' knowledge can be expressed" [12]. In compliance with that is that 

only lower bound probabilities are allowed in Subjective URDF. In RDF the expression of positive knowledge 

alongside negative knowledge can lead to inconsistency and the same is the case in Subjective URDF where 

lower bound probabilities alongside upper bound probabilities can result in inconsistency especially when 

associated with the same triple. [12]  

"When a knowledge base is extended, degrees of belief either stay the same or increase. This is similar to the 

effect in RDF that, when RDF graphs are merged, the set of entailed fact either stays the same or gets 

bigger." [12]  

On the one hand Subjective URDF is less expressive than URDF but on the other hand it has a greater 

practical usefulness due to its advantages as mentioned above. 

Also pointed out in [12], is that Subjective URDF follows the "Principle of Least Power" by Tim Berners-Lee. 

"[..], it states that the requirements of a common data format must be decided upon as conservatively as 

possible" [12] This is because a more conservative i.e. more simple format is easier to generate and analyze 

which gives it an attractive boost of usefulness.  



3 7  | U R D F  
 

This thesis means to focus on modelling ontologies rather than defining languages and logics, which is why 

no greater detailed definition of probabilistic logic and URDF will be given. For more information please refer 

to [12].  

Together with Subjective URDF techniques of merging two URDF graphs and adjusting the resulting 

probabilities according to the laws of probabilistic logic and for merging RDF graphs with URDF graphs are 

delivered. The latter is especially interesting because it allows to engage a RDF graph with a degree of belief, 

by simply adding a probability constraint over the conjunction of all the triples in the graph, before 

combining it with another one. When person A has an ontology in URDF, person B has an ontology in RDF 

and A trusts B (believes in what B says) to a degree of 0.8 then A can merge his ontology with B's ontology 

after applying the constraint 𝑃𝑟(Φ1 ∧ Φ2 … ∧ Φ𝑛) ≥ 0.8 where 𝜙1 … ϕ𝑛 are all triples in B's ontology to 

consider his trust in B when absorbing his information.    

Also an automated inference procedure is offered that can even be abstracted to represent conditional 

(in)dependencies with Bayesian Networks and perform Bayesian inference. The handling of Bayesian 

Networks with BayesOWL as it is presented in section 3.1, next to other probabilistic extensions for the 

Semantic Web are encapsulated by URDF.  

 "This demonstrates the fact that URDF can be used as a unifying formalism for many kinds of probabilistic 

reasoning in the Semantic Web, as opposed to focusing on a single kind of reasoning, such as Bayesian 

inference with Bayesian Networks, or probabilistic inference with independence assumptions." [12]  

All these aspects make URDF a very promising approach to modelling uncertainties in the Semantic Web but 

it has not yet grown to full functionality because there have not yet been any outcomes about the 

representation of URDF other than an abstract syntax. One way of developing such a representation is to 

integrate it into the existing RDF syntaxes (XML, Turtle, etc.) to keep ontologies based on RDF running 

without major adjustments.  

Another problem that remains is that independencies between triples might not always be possible to 

handle with Bayesian Networks and "[..] making a global independence assumption violates dependence 

relations imposed by OWL integrity constraints, and therefore defeats the purpose of a great part of the OWL 

vocabulary" [12]



3 8  | C o m p a r i n g  m a t h e m a t i c a l  a p p r o a c h e s  
 

3.4. Comparing mathematical approaches 
When comparing BayesOWL, Fuzzy OWL 2 and URDF, it is obvious that each of them follow different 

mathematical theories to model uncertainty. 

BayesOWL provides a way of modeling conditional probabilities with BNs. On the one hand the similarity of 

RDF graphs and BN, the power of representing conditional probabilities and Bayesian inference are benefits 

but on the other hand the model with its probabilities applied to any individual in the ontology, enforces a 

completely different perspective and expressiveness of ontologies than common ontology models. Fuzzy 

OWL 2 follows a fuzzy description logic where degrees of truth, fuzzy modifiers and datatypes are used and 

reinforce a great measure of expressiveness and similarity to natural language (for example with modifiers 

such as “very”). A weak point is that there is no full reasoning algorithm for the corresponding logic known 

yet. URDF is based on probabilistic logic that applies probability distributions to first-order-logic formulas 

and comes with inference and reasoning procedures based on probabilistic theory. Even though there are 

still hindrances with conditional probabilities, the inference procedure can be adjusted to represent 

Bayesian Networks, so that URDF’s dominates BayesOWL in terms of expressiveness. 

A point that that Fuzzy OWL 2 and URDF have in common is that uncertainty can not only be applied to 

assertions within an ontology but also to the ontology itself, supporting degrees of trust or belief for 

different ontologies. This feature puts Fuzzy OWL 2 and URDF in advantage because it is not supported by 

BayesOWL. 

To handle uncertainties, each of the three models approaches the Semantic Web Stack from a different 

angle. BayesOWL suggests to extend OWL by a couple of classes and properties that aid the representation 

of BNs. Other than adding to the OWL namespace this does not differ from simply using OWL. Nonetheless 

as stated above, unlike common ontologies, ontologies representing BNs apply probabilities to any individual 

in the ontology. That is why BN ontologies need to be interpreted in another way than common ontologies, 

thus common ontologies cannot be easily extended and uncertainties cannot be added to existing ontologies 

using BayesOWL. Instead uncertainty must be considered from the very start of developing the ontologies. 

Fuzzy OWL 2 uses annotation properties to describe uncertainties. This approach also uses OWL to apply 

uncertainties but the fact that annotation properties are used with an XML notation is different from 

common OWL usage. Annotation properties can be ignored by reasoners and other software so that an 

ontology that is loaded with uncertainties annotated with Fuzzy OWL 2, can still be used as crisp ontology, 

bypassing the uncertainties. It is similar to how uncertainties can be bypassed in CRM and the uncertainty 

framework described in section 2 and comes with the same problem, that uncertain data could falsely be 

assumed certain. This is not the case for BayesOWL and URDF. URDF attempts to extend RDF which is the 

basis of OWL and everything above it. Such an extension would generate the necessity of a complete roll up 

of all the layers of the Semantic Web Stack that build up on RDF. Although the benefits and changes that go 

together with URDF are promising, such a major impact on everything that has been developed up to now 

should be the last resort when adding uncertainties to the Semantic Web.  

Finally the different states of development need to be taken into consideration. BayesOWL in its current 

state is limited to class membership assertions and everything else (role assertions etc.) is pending. URDF 

does not yet have a suitable representation, which is supposedly the smallest problem because adjustment 

of everything that is based on RDF must be performed to. The greatest maturity is shown by Fuzzy OWL 2. It 

is capable of adding uncertainties to just about anything in an existing ontology and even software (the 

Protégé Plugin) for easy annotation with Fuzzy OWL 2 already exist. Despite the fact that there is not yet a 

full inference procedure for the underlying fuzzy logics, there are translation tools to make Fuzzy OWL 2 (in 

not all of its expressiveness) work with existing fuzzy reasoners.



3 9 | C o n c l u s i o n   
 

4. Conclusion 
The different approaches of modelling uncertainties using ontologies that are presented and compared in 

section 2 and 3, all have their specific features that need to be weighted up in order to decide which 

approach suits a certain situation best. In conclusion it is to say that, when fuzzy logic is applicable as 

mathematical representation of uncertainty, then Fuzzy OWL 2 is (Section 2.3) a good choice to annotate 

uncertainties. The major benefits are automated annotation with Protégé plugins, translation tools for fuzzy 

reasoners and that simple annotation properties are used, keeping the ontology small. When other theories 

or representations of uncertainty are asked for, the UN (as used in section 1.1) is a good choice, because it 

keeps graph growth limited, prevents bypassing the uncertainty and does not enforce any specific 

mathematical theory. But both of them as all the other represented models should not be taken too easily 

and have their own problems to them. One of the main questions to ask when choosing a suitable model is if 

uncertainty should be added to an existing ontology or an new ontology should be designed. When an 

existing ontology is to be extended it is easiest to make the uncertainty bypassable as CRM, the uncertainty 

framework and Fuzzy OWL 2 do it. The risk here is that information can falsely be interpreted as certain. To 

prevent such bypasses the uncertainties must be considered from the start of the ontologies design as with 

UN. Each approach can be chosen and adjusted according to the specific situation. URDF as an attempt to 

extend the RDF layer of the Semantic Web Stack is, though promising, far from complete and such an impact 

to RDF layer, causing the necessity of adjusting the above layers, should be considered a last resort for 

modelling uncertainties using ontologies.



4 0 | A p p e n d i x   
 

Appendix A 
 

Table of namespaces 

Namespace Shortcut 

http://nomisma.org/id/ nm 

http://nomisma.org/ontology# nmo 

http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/Uncertainty.owl  un 

http://erlangen-crm.org/current/ crm 

<http://collection.britishmuseum.org/id/ontology/>  bmo 

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf 

http://www.w3.org/2000/01/rdf-schema# rdfs 

Table 1: Table of namespaces 

Appendix B 
 

PX property 
The problem solved by PX property is that when additional information is added via the long-cut, it is unclear 

to which one of the short-cuts this information belongs. 

If there are more than one short-cuts connecting the same two individuals and there is at least one long-cut 

with addition information, it is unclear to which one of the short-cuts this information belongs. 

In
d

iv
id

ua
ls

exp:hasMint

exp:hasFindPlace

P140 assigned attribute to P141 assigned

bmo:PX likelihood

bmo:PX property

 

Figure 26: PX property example 1 

Figure 26 shows an example of this problem. Note that PX property is dotted because when it is added the 

problem is solved. CoinX has Rome as a mint connected via the property (short-cut) hasMint and CoinX has 

Rome as a finding place connected via the property hasFindingPlace. Observe that contrary to other 

examples, in this example the individual Rome does not only represent Rome as a Mint but also Rome as a 

place. There is also a long-cut carrying the additional information “uncertain”. However without PX property 

it is not clear to which of the short-cuts this long-cut and this information belongs. The uncertainty could 

belong to either or even both of the short-cuts. Clarification is provided by PX property linking the long-cut 

to the corresponding short-cut. Now it is clear that the uncertainty belongs to only one of the short-cuts, 

namely hasMint.  

http://www.w3.org/2000/01/rdf-schema


4 1 | A p p e n d i x   
 

In
d

iv
id

ua
ls

exp:hasMint

P140 assigned attribute to P140 assigned attribute to

bmo:PX likelihood

bmo: PX property

exp:hasFindPlace

 

Figure 27: PX property example 2 

However this problem does not occur as long as there is not more than one short-cut connecting the same 

two individuals. In Figure 27 it is clear that the long-cut corresponds to the short-cut hasMint even though 

there is no link between the two. This is because hasMint links the individuals CoinX and Rome and the long-

cut also links these individuals CoinX and Rome, while the other short-cut hasFindingPlace links CoinX to a 

different individual Greece. It is obvious that the long-cut cannot correspond to hasFindingPlace simply 

because they link different individuals.  

Appendix C 
 

Bayesian Network example 
This example considers the random variable c, denoting the event that an arbitrary individual is a coin, the 

variable f, denoting that an individual was found with roman coins and the variable 𝑟, denoting that an 

individual is a roman coin. Each of these variables is a binary random variable and comes out to either true 

or false.  

The example data are 100 elements of which 80 coins and 40 are found with roman coins and so on as given 

in  

Table 2. 

  𝑓 = 𝑡𝑟𝑢𝑒 𝑓 = 𝑓𝑎𝑙𝑠𝑒 ∑ 

  𝑟 = 𝑡𝑟𝑢𝑒 𝑟 = 𝑓𝑎𝑙𝑠𝑒 𝑟 = 𝑡𝑟𝑢𝑒 𝑟 = 𝑓𝑎𝑙𝑠𝑒   

𝑐 = 𝑡𝑟𝑢𝑒 50 10 5 15 80 

𝑐 = 𝑓𝑎𝑙𝑠𝑒 9 1 2 8 20 

∑ 59 11 7 23 100 

 
Table 2: BN example data 

To represent these circumstances in a Bayesian Network with three nodes, where each node represents one 

of the random variables, the prior and conditional probabilities can be pooled in the following conditional 

probability tables (CPT) ( 

Table 3,  



4 2 | A p p e n d i x   
 

Table 4,  

Table 5). The concluding Bayesian Network is illustrated in Figure 28.  

𝑐 

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 

8/10 2/10 

 
Table 3: CPT for c 

𝑓 

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 

7/10 3/10 

 
Table 4: CPT for f 

 

 𝑟 

𝑐 𝑓 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 2/10 8/10 

𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 9/10 1/10 

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 1/4 3/4 

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 5/6 1/6 

 
Table 5: CPT for r. 

 
 
 
 

Coin
found with 

roman coins

roman coin

 

Figure 28: Bayesian Network example 



4 3 | R e f e r e n c e s   
 

References 
 

[1]  Dieter Fensel, et al., Spinning the Semantic Web: bringing the World Wide Web to its full potential., 

The MIT Press, 2003.  

[2]  World Wide Web Consortium, "Semantic Web - W3C," World Wide Web Consortium, [Online]. 

Available: http://www.w3.org/standards/semanticweb/. [Accessed 18 8 2014]. 

[3]  Wikipedia, the free encyclopedia, "Semantic Web Stack - Wikipedia, the free encyclopedia," Wikipedia, 

24 10 2013. [Online]. Available: http://en.wikipedia.org/wiki/Semantic_Web_Stack. [Accessed 20 8 

2014]. 

[4]  Wikipedia, the free encyclopedia, "File:Semantic-web-stack.png - Wikipedia, the free encyclopedia," 18 

5 2008. [Online]. Available: http://upload.wikimedia.org/wikipedia/en/3/37/Semantic-web-stack.png. 

[Accessed 18 8 2014]. 

[5]  W3C RDF Working Group, "RDF - Semantic Web Standards," World Wide Web Consortium, 25 2 2014. 

[Online]. Available: http://www.w3.org/RDF/. [Accessed 18 8 2014]. 

[6]  "RDF Schema 1.1," World Wide Web Consortium, 25 2 2014. [Online]. Available: 

http://www.w3.org/TR/rdf-schema/. [Accessed 8 18 2014]. 

[7]  "RDF 1.1 XML Syntax," World Wide Web Consortium, 25 2 2014. [Online]. Available: 

http://www.w3.org/TR/rdf-syntax-grammar/. [Accessed 18 8 2014]. 

[8]  "RDF 1.1 Concepts and Abstract Syntax," World Wide Web Consortium, 25 2 2014. [Online]. Available: 

http://www.w3.org/TR/rdf11-concepts/. [Accessed 18 8 2014]. 

[9]  W3C OWL Working Group, "OWL - Semantic Web Standards," World Wide Web Consortium, 11 12 

2012. [Online]. Available: http://www.w3.org/2001/sw/wiki/OWL. [Accessed 18 8 2014]. 

[10]  W3C OWL Working Group, "OWL 2 Web Ontology Language Document Overview (Second Edition)," 

World Wide Web Consortium, 11 12 2012. [Online]. Available: http://www.w3.org/TR/owl2-overview/. 

[Accessed 18 8 2014]. 

[11]  "Uncertainty Reasoning for the World Wide Web," World Wide Web Consortium, 31 3 2008. [Online]. 

Available: http://www.w3.org/2005/Incubator/urw3/XGR-urw3/. [Accessed 18 8 2014]. 

[12]  T. Rienstra, "Dealing with Uncertainty in the Semantic Web," Department of Computerscience, 

University of Twente, 2008. 

[13]  "Defining N-ary Relations on the Semantic Web," World Wide Web Consortium, 12 4 2006. [Online]. 

Available: http://www.w3.org/TR/swbp-n-aryRelations/. [Accessed 18 8 2014]. 

[14]  "Definition of the CIDOC Conceptual Reference Model (v.5.1.2)," ICOM/CIDOC CRM Special Interest 

Group, 2013. 

[15]  V. Alexiev, "Types and Annotations for CIDOC CRM Properties," Ontotext Corp, Sofia, Bulgaria, 2011. 



4 4 | R e f e r e n c e s   
 

[16]  Vladimir Alexiev, Joshua Mahmud, "BM Association Mapping v2," Ontotext Research Space, 18 3 2014. 

[Online]. Available: 

https://confluence.ontotext.com/display/ResearchSpace/BM+Association+Mapping+v2. [Accessed 18 

8 2014]. 

[17]  M. Vacura, V. Svátek and P. Smrž, "A Pattern-based Framework for Representation," Springer, Berlin, 

2008. 

[18]  Wikipedia, the free encyclopedia, "Bayesian probability - Wikipedia, the free encyclopedia," Wikipedia, 

28 06 2014. [Online]. Available: http://en.wikipedia.org/wiki/Subjective_probability. [Accessed 18 8 

2014]. 

[19]  Z. Ding, Y. Peng and R. Pan, "A Bayesian Approach to Uncertainty Modelling in OWL Ontology.," 

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 

2006. 

[20]  F. Bobillo and U. Straccia, "Fuzzy Ontology Representation using OWL 2," arXiv:1009.3391v3, 2010. 

 

 

 


	Abstract
	1. Introduction
	1.1. The Semantic Web
	1.2. RDF and RDFS
	1.3. OWL
	1.4. Uncertainty
	1.5. Illustrations
	1.6. Examples

	2. Ontology modeling approach
	2.1. W3C’s Uncertainty ontology
	2.2. International Council of Museums Conceptual Reference Model
	2.3. Uncertainty Framework
	2.3.1. Fuzzy instantiation
	2.3.2. Fuzzy relations

	2.4. Comparing modeling approaches

	3. Mathematical approaches
	3.1. BayesOWL
	3.1.1. Prior Probability
	3.1.2. Conditional Probability

	3.2. Fuzzy OWL 2
	3.2.1. Modifiers
	3.2.2. Fuzzy datatypes
	3.2.3. Fuzzy axioms

	3.3. URDF
	3.4. Comparing mathematical approaches

	4. Conclusion
	Appendix A
	Table of namespaces

	Appendix B
	PX property

	Appendix C
	Bayesian Network example

	References

