GOETHE UNIVERSITY FRANKFURT

Institute for Computer Science

Bachelor Thesis

Natural Language Processing
to enable semantic search
on numismatic descriptions

Patricia Klinger

February 8, 2018

supervised by

Prof. Dott.-Ing. Roberto V. Zicari

Databases and Information Systems (DBIS)

Erklarung zur Abschlussarbeit geméf § 25, Abs. 11 der Ordnung fiir den Bachelorstu-
diengang Informatik vom 06. Dezember 2010:

Hiermit erklére ich, dass ich die Bachelorarbeit selbststéandig und ohne Benutzung anderer
als der angegebenen Quellen und Hilfsmittel verfasst habe.

Frankfurt am Main, den 8. Februar 2018

Patricia Klinger

Contents

1 Introduction

2 Corpus Nummorum Thracorum in Numismatics

2.1
2.2

The CNT Database
Related Work

3 Methods and Theoretical Background

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Information Extraction Architecture
Classification s
Feature Extraction in Natural Language Processing
Evaluation of a Classifier’s Performance
Cross-Validated Grid Search
SpaCy’s DependencyParser and EntityRecognizer
Methods for Relation Extraction

4 Implementation

4.1
4.2

Named Entity Recognition
Relation Extraction

5 Lessons Learned

6 Measurement Results and Discussion

6.1
6.2

Named Entity Recognition
Relation Extraction. oL

7 Summary and Outlook

List of Figures

1

(Celesti et al. 2017, p. 10): The Digital Iconographic Atlas of Numismatics
in Antiquity (DTANA) enables a hierarchical search. Each navigational
step requires a manual click.
In the Roman Provincial Coinage Iconographic search, both design groups
and key words serve as search criteria. Here the first matching coin is
displayed.
(Bird, Klein, and Loper 2009, chap. 7): Information Extraction Architecture.
Five steps are required to transform raw text into relations.
Named Entity Recognition and Relation Extraction are implemented in
two sequential pipelines.
In the Named Entity Recognition workflow, revising the ground truth
(GT)-matching and non ground truth (GT)-matching predictions helps to
improve the input for the Named Entity recognizer.

12
14
16

20

23
23
25

29

13

12

13

14

15

16

In the Relation Extraction workflow, annotated relations are transformed
into features for training the Relation Extraction classifiers. TN = True
Negatives, TP = True Positives, FN = False Negatives and FP = False
Positives. 18
First step of the Named Entity Recognition workflow depicted in figure 5. 21
Third step of the Named Entity Recognition workflow depicted in figure 5. 21
First step in the Relation Extraction workflow depicted in figure 6. 22
Second step in the Relation Extraction workflow depicted in figure 6. . . . 22
The number of OBJECTs is substantially higher than for any other label.
Each color block corresponds to a unique term which occurs with different

frequencies. For example, the most frequent PERSON is Apollo. 23
The Named Entity recognizer performs better with a random than with a
name-disjoint train-test split on the test data. 24

Designs labeled in accordance with the ground truth annotations are
visualized with displaCy. Each color in the visualization corresponds to

a label: Purple represents PERSON, green represents OBJECT, yellow
represents ANIMAL and grey represents PLANT. 25
Eleven relations have been identified in the CNT designs. Most (PERSON,
OBJECT) pairs have no relation at all. “stepping on” and “grasping”
appear eight times each, “lying” and “hurling” once each. 26
Classifier ranking according to F1 score. The best results for F1 score
(88%), precision (92%) and recall (84%) are achieved with feature-classifier-
combinations of Path2Str, bag of words with 2- or 3-grams (CV(ngram=(1,2))

or CV(ngram=(1,3))) and logistic regression (LR()) or SVM with a linear
kernel (SVC(“linear”)). PoS-tags and dependency labels have little influence

on the scores. The performance of all feature-classifier-combinations is
shown in figure 16.o 27
Overview of the performance of all feature-classifier-combinations. The

best combinations employ Path2Str, bag of words with 2- or 3-grams
(CV(ngram=(1,2)) or CV(ngram=(1,3))) and logistic regression (LR())

or SVM with a linear kernel (SVC(“linear”)). The top ten performers are
ranked in figure 15. L 28

List of Tables

1

(Sarkar 2016, cf. p. 201): Confusion matrix for a two-class classification
problem. TP = True Positives, FP = False Positives, FN = False Negatives
and TN = True Negatives. 9
The eleven relations identified between (PERSON, OBJECT) pairs in the
CNT designs represent semantic clusters. no existing relation is used for
designs which lack any such relation. 17

1 Introduction

The numismatic database Corpus Nummorum Thracorum (CNT)' contains a virtual
meta-collection of ancient coins of Thrace. Thrace is an ancient region which covers
modern Bulgaria, Northern Greece, and European Turkey over a period from 666 BC
to 400 AD. The meta-collection consists of Thracian coins located in museums and
private collections from all over the world. By analyzing these coins, coin dies have been
reconstructed if possible. The goal of CNT is to generate a typology of Thracian coins?.
Unique identifiers shall connect the detected types to Nomisma3. Nomisma is a project to
provide stable digital representations of numismatic concepts according to the principles
of Linked Open Data.

The iconography of the ancient coins is described in human language. A description of
the reverse and obverse of each coin is given both in English and German. Based on the
CNT database dump from January 9, 2018, there exist 3.628 iconographic descriptions, in
the following called designs. All designs are stored in a relational MySQL database. The
designs can be searched, e.g. for a person, its function or its epoch in the CNT Advanced
Search?. Such queries are based on key words which can be selected from a list. For

“Apollo seated left on omphalos, holding bow in right hand.”,

the coherent key words are the name “Apollo” and the object “bow” (cf. section 2.1).

Together with the designs, these key words are stored in the database and contain
relevant information. However, they have been extracted manually from the designs. As
manual labor is expensive, it would be better to extract information automatically. In
information extraction, five tasks are distinguished (cf. section 3.1). The most important
tasks are named entity recognition (NER) and relation extraction (RE). Named entities
(NEs) are definite noun phrases, e.g. names like “Apollo”, that refer to specific types of
individuals, e.g. persons, organizations or locations (Bird, Klein, and Loper 2009, chap.
7.5). Extracting the relation between NEs means to built triples of the form (N E1, o, N E2).
« is the string of words intervening between the two NEs (Bird, Klein, and Loper 2009,
chap. 7.6). NER is a challenging learning problem, because usually only a small amount of
training data is available (Lample et al. 2016). RE is even more difficult because language
ambiguity forms a massive obstacle (Konstantinova 2014, p.24).

Reducing manual labor and enhancing numismatic search would thus be of great help
for the numismatic community. Therefore the idea arose to build an application that
recognizes, for example, persons in designs. Ideally, the application should be a smart
system, whose recognition works automatically and which even recognizes new persons in
new designs. Achieving an accuracy of below 100% seemed sufficient, because instead of
being 100% accurate the application was supposed to generalize from the CNT data to
other numismatic data sets (for the definition of accuracy cf. section 3.4). Additionally, it
seemed desirable to be able to extract certain relations automatically.

Thttps: //www.corpus-nummorum.eu

Zhttps:/ /www.corpus-nummorum.eu/about.php
3http://www.nomisma.org,/
“https://www.corpus-nummorum.eu/AdvSearch.php

Definition of task The goal of this bachelor thesis is to take first steps in accessing
relevant information in the CNT designs by using Natural Language Processing (NLP),
i.e. computer manipulation of natural language (Bird, Klein, and Loper 2009, Preface).
The thesis” approach is supposed to reduce manual labor and generalize from the CNT
designs to other numismatic data sets. This thesis aims at laying the foundations for a
smart search on numismatic descriptions. Consider again the design:

“Apollo seated left on omphalos, holding bow in right hand.”

If all persons holding a bow had to be found, a smart search would find “Apollo”. By using
NLP, the NEs persons, animals, plants and objects shall be automatically recognized and
relations between persons and objects shall be automatically extracted.

For computer programs, human language is not easy to access. Thus it is difficult to
extract relevant information from texts. NLP is a specialized field of computer science that
tries to deal with this problem. It focuses on building applications to enable interaction
between machines and natural languages (Sarkar 2016, p. 46). NLP often employs machine
learning techniques and many machine learning libraries, such as scikit learn® and pandas®,
use the programming language Python. Therefore all implementations in this thesis are
realized with Python.

One possibility to work on human language data with Python is the Natural Language
Toolkit (NLTK)". Despite NLTK being widely used in academia, it makes it difficult to
add new entity types; an important feature given that the CNT designs talk about ancient
deities and mythical animals which require new labels. The spaCy NLP library® offers
the possibility to annotate NEs in natural language texts (cf. section 3.6). Adding new
entity types with spaCy is straightforward. Moreover, the interaction with scikit learn
and pandas is well established. Therefore this thesis implements NLP with spaCy.

Structure The following chapters provide a more detailed discussion of the briefly
sketched approach of this thesis. The second chapter locates the CNT database in
numismatics. The third chapter focuses on how information extraction works in general
and what methods have been used for meeting the requirements. In chapter four, the
implementation of the approach is presented and explained. In chapter five, problems
that arouse during implementation are pointed out and the corresponding solutions are
discussed. Chapter six leaves room for evaluating the implementation and discussing the
results. Finally, chapter seven summarizes the main findings and offers an outlook on
further research.

Shttp://scikit-learn.org/
Shttps://pandas.pydata.org/
"http://www.nltk.org/
Shttps:/ /spacy.io/

2 Corpus Nummorum Thracorum in Numismatics

2.1 The CNT Database

The numismatic database Corpus Nummorum Thracorum (CNT) contains a virtual meta-
collection of ancient coins of Thrace. Thrace is an ancient region which covers modern
Bulgaria, Northern Greece, and European Turkey over a period from 666 BC to 400 AD.
The meta-collection consists of Thracian coins located in museums and private collections
from all over the world. By analyzing these coins, coin dies have been reconstructed if
possible. The goal of CNT is to generate a typology of Thracian coins. Unique identifiers
shall connect the detected types to Nomisma. Nomisma is a project to provide stable
digital representations of numismatic concepts according to the principles of Linked Open
Data.

The iconography of the ancient coins is described in human language. A description of
the reverse and obverse of each coin is given both in English and German. Based on the
CNT database dump from January 9, 2018, there exist 3.628 iconographic descriptions,
in the following called designs. All designs are stored in a relational MySQL database.

The CNT designs differ a lot in level of detail and length. Some consist of merely four
words:

“Bust of Dionysus right.”
Others describe a scene in detail:

“Emperor (Caracalla) and Heracles; to left, laureate and cuirassed emperor
(Caracalla) standing facing, head to right, wearing boots, holding a long sceptre
in his right hand; to right, nude Herakles, standing left, holding club in left
hand and showing him with right hand the apples of the Hesperides; between
them, below their clasped hands, round garlanded lighted altar. Ground line.
Border of dots.”

Semicolons are used to indicate the beginning of a semantic unit and to structure the
design by focusing on an iconographic subject. Yet it is not always obvious who the
iconographic subject is. In this design, the iconographic subjects are the two persons
depicted on the coin.

Some of the designs are therefore accompanied by manually extracted key words which
are also stored in the database. In

“Apollo seated left on omphalos, holding bow in right hand.”,

the coherent key words are “Apollo” and “bow”. The easiest way to employ key words is a
full text search without a hierarchical structure. Manual navigation through the search
mask is not required. In the CNT Advanced Search, key words can be selected from a
prepared list without any hierarchical structure. These key words correspond to those
stored in the database. “Apollo”, for example, can be selected from a drop down menu in
the search mask and this proper name corresponds to “Apollo” listed in the key words in
the database.

MACRO-CATEGORY

Pexrsomage S — .
Anmmal/Menstnon |
Flora ‘
Object |
Vv
Historical Personage
CATEGORY Comxamon Personage
God /Hexro
Personufication of abstract extity
v Personufication of texritorial exdity
Bay
(com type) s
Aphaia
Aploodite Vems
Aplyytos
Arcuias
Arves/Ma's
Argonmaital
Argos
Arniadne
Repre sentation 1 Sex| ¢ 1 Age | qun View f,"n‘a,
fige 1 le child tlae e-cuarter
head ok positiom
young from behind
headtuomed
dhargmg lookmgbacdwards
aouchmg other
Posture "f;: e Clothing | g
Imee Ing dressed
Iying dovm naked
on cart other
on horsebadk
nonmng
seated on cista Atk [vow aven =
seated onrock hand
seated on the groumd head
seated on we apons :e‘f.k
stanudas
e 18 Soulders
wakmg
other

Figure 1: (Celesti et al. 2017, p. 10): The Digital Iconographic Atlas of Numismatics
in Antiquity (DIANA) enables a hierarchical search. Each navigational step
requires a manual click.

2.2 Related Work

A similar numismatic project is the Digital Iconographic Atlas of Numismatics in Antiquity
(DIANA)?. DIANA focuses on the iconographic subject displayed on the coin and therefore
distinguishes four iconography types: personages, animals/mythical creatures, flora and
objects. This classification is based on numismatic indices and lexicons (Celesti et al. 2017,
p. 5). DIANA enables a hierarchical search starting with the macro-category “personage”
over “god/hero” to a proper name, e.g. “Apollo” (figure 1). Furthermore, attributes as
the age, the posture and the clothing can be selected. For example, the posture “seated
on omphalos” takes the relation of the person “Apollo” and the object “omphalos” into
account (figure 1). Attributes are based on key words listed within each category. Hence
each step has to be taken with a manual click to navigate in DIANA’s search hierarchy.
DIANA offers a broad range of search options as well as the CNT Advanced Search. Simi-
larly, other numismatic databases like Mantis: A Numismatic Technologies Integration Ser-

“http://ww2.unime.it /diana/

Roman Provincial Coinage Online

Search

Ilconographic search Help

matching coin types.
Iconographic Abbreviated view / Tabulated view / Map view
search

Sorted by: Volume, Number. Sort options

Search criteria:
. - Volume: [V Ne: 10361 Purse:
Design group: Deities /

Personifications) _ _ City: Traianopolis Province: Thrace Person:
Lucius Verus

Obv. design: laureate-headed bust of Lucius
Verus wearing cuirass and paludamentum, r.
Rev. design: nude Apollo standing, facing, head,
r., holding plectrum and lyre which rests on
tripod; tripod entwined by serpent

Metal: Bronze Average diameter: 30 mm
Average weight: 19.80 g

Design: Apollo with lyre

Province: Thrace s \‘\. '
Refine search t‘: .\
New search i.,f
Preferences s pb

Figure 2: In the Roman Provincial Coinage Iconographic search, both design groups and
key words serve as search criteria. Here the first matching coin is displayed.

vice (MANTIS)'Y, Online Coins of the Roman Empire (OCRE)'* and Roman Provincial
Coinage (RPC)* can be queried by specific key words. In the RPC Iconographic search!?,
seven design groups are distinguished: animals, architecture, deities/personifications,
games, heroes/famous persons, imperial family and objects. By selecting one group, e.g.
deities/personifications, key words like “Apollo with lyre” can be selected from a prepared
list without any hierarchical structure. After choosing a province from an analogously
structured list, e.g. “Thrace”, all coins from this province are shown (figure 2).

Of the previously discussed search approaches, DIANA’s is the most sophisticated: It
is structured hierarchically, distinguishes different iconography types and takes certain
relations between these types into account. Still, if search is based on key words in the
search mask or in the database, manual labor is required to select entries and to add new
designs. Thus search does not improve automatically by learning new categories. Relevant
information in new added designs is not recognized automatically. Given the discussed
approaches, it’s fair to say that NLP has not yet been applied to numismatics. The goal is
to extract relevant information from designs and enhance search in terms of automation,
flexibility and generalizability.

Based on the idea introduced by DIANA to focus on the iconographic subject, this
thesis takes first steps in addressing the discussed shortcomings by making use of NLP.
The theoretical background needed therefor is presented in the following chapter.

Ohttp:/ /numismatics.org/search /search
"http://numismatics.org/ocre/search
2http:/ /rpc.ashmus.ox.ac.uk/coins,/
3http:/ /rpc.ashmus.ox.ac.uk/search /icono/

3 Methods and Theoretical Background

This chapter provides an overview of the methods and the theoretical background relevant
for this bachelor thesis. The order of this chapter follows the implemented named entity
recognition (NER) and relation extraction (RE) pipelines (cf. section 4). All implementa-
tions interact with the spaCy NLP library.

In section 3.1, the information extraction architecture with its crucial steps NER and
RE is discussed. In section 3.2, classification and multiclass classification are defined.
The techniques to extract the most adequate features to train a classifier are discussed
in section 3.3. The metrics and best practices to evaluate a classifier’s performance are
presented in section 3.4. In section 3.5, cross-validated grid search is introduced. spaCy’s
classes DependencyParser and EntityRecognizer are discussed in section 3.6. Different
methods for RE are presented in section 3.7.

3.1 Information Extraction Architecture

The founders of the Natural Language Toolkit (NLTK) Bird, Klein and Loper have coined
the notion of information extraction by presenting an information extraction architecture
(Bird, Klein, and Loper 2009). The pipeline architecture for an information extraction
system consists of five steps (figure 3). In the first step of sentence segmentation, the raw

raw text pos-tagged sentences
{string) {Wist af fists of tupies)
sentence antity
segmentation detection
N

chunked sentences
v {list of treas)

sentences
flist af strings) ik

———

relation
detection

tokenization
—

tokenized sentences
flist of Fsiz of strings) \

— relations
part of speach tlist of tuples)

tagging

Figure 3: (Bird, Klein, and Loper 2009, chap. 7): Information Extraction Architecture.
Five steps are required to transform raw text into relations.

input text is subdivided into sentences as the basic units of meaning (Bird, Klein, and
Loper 2009, chap. 7.1). To access each word of these sentences represented by a list of
strings, the sentences are tokenized in a second step so that each string is divided into
substrings. Third, the tokenized sentences are part of speech (PoS) tagged so that each
word is labeled with its grammatical functionality in the sentence, e.g. with noun, verb,
adverb or determinant. In the fourth step, named entities (NEs) are recognized in the PoS
tagged sentences. NEs are definite noun phrases, e.g. proper names, that refer to specific
types of individuals, e.g. persons, organizations or locations (Bird, Klein, and Loper 2009,

chap. 7.5). Named entity recognition (NER) shall identify all textual mentions of the
NEs (Bird, Klein, and Loper 2009, chap. 7.5). The basic technique used in this context is
chunking in order to extract the definite noun phrases in a sentence. Chunking is often
realized with regular expressions (Bird, Klein, and Loper 2009, chap. 7.2). The fifth and
last step in the pipeline is relation extraction (RE). To extract the relation between NEs
means to built triples of the form (NEj, a, NEy) with « being “the string of words that
intervenes between the two NEs” (Bird, Klein, and Loper 2009, chap. 7.6). RE can be
used, for example, to reveal an existing relation indicated by the verb between a subject
and an object in a sentence.

3.2 Classification

A problem is a classification problem if each input vector is assigned to a finite number
of discrete classes (Bishop 2006, p. 3). The classification process consists of two processes:
Training and prediction (Sarkar 2016, p. 171). During training, a supervised learning
algorithm takes the annotated input data, i.e. the input data together with the class to
which the coherent data point shall be assigned, and returns the trained classifier. Usually,
the training data has to be annotated manually to provide the classifier the information
it requires in the training process. During prediction, the trained classifier predicts the
class of input vectors which have not been involved in the preceding training process.

This bachelor thesis focuses on multiclass classification with each input vector being
assigned to one of k mutually exclusive classes (Bishop 2006, p. 235). Accordingly, each
prediction can contain any of these k classes (Sarkar 2016, p. 172).

There exists a variety of classifiers. For text classification, support vector machines
(SVMs) are an effective choice (Sarkar 2016, p. 194). SVMs choose the decision boundary
so that the margin, i.e. the smallest distance between the decision boundary and any data
sample, is maximized (Bishop 2006, p. 326). The decision boundary separates the input
space into one decision region for each class so that all data points are assigned to one
concrete class (Bishop 2006, p. 39). Other classifiers are logistic regression and LSTMs
(for more details cf. section 3.6). Logistic regression is a generalized linear model based
on the logistic sigmoid function and is also commonly used for classification problems
(Bishop 2006, p. 205).

3.3 Feature Extraction in Natural Language Processing

To train a classifier so that it produces the optimal output, it is necessary to find adequate
features as input. A feature is understood as a unique, measurable attribute or property
for each data point in a data set (Sarkar 2016, p. 177). Thus feature extraction is a
pre-processing stage to provide a subsequent classification algorithm with distinguishable
input between different classes (Bishop 2006, p. 2). Feature extraction is “both art and
science” (Sarkar 2016, p. 178). During this process, it has to be taken into account that
many machine learning algorithms require a fixed-length feature vector as input (Le and
Mikolov 2014). However, words and sentences come in variable length. Therefore several
techniques have been developed to transform text data into fixed-length vectors. Bag of

words and Term Frequency-Inverse Document Frequency (TF-IDF) as the most common
ones are presented in the following.

In a bag of words representation, the frequency of each word appearing in a text is
counted. Bag of words has become a commonly used model to extract features from text
documents due to its simplicity and power (Sarkar 2016, p. 179). It is computed in three
steps: tokenize the document, build a vocabulary over all words in the document and
finally count how frequently each vocabulary word appears in the document (Muller and
Guido 2017, p. 327). The output is a vector of word counts per document.

Bag of words features have two major disadvantages: The ordering of the input words
is lost and the semantics of the words is ignored (Le and Mikolov 2014). Using bag of
words with n-grams, i.e. sequences of tokens of length n, partially preserves the context of
the words. Commonly, pairs (bigrams) or triplets (trigrams) of tokens that appear next
to each other are used (Muller and Guido 2017, p. 339). Bag of words is implemented in
the class sklearn.feature_extraction.text.CountVectorizer. It has the optional
parameter ngram_range to specify the range of the sequences of tokens’ length. The
default value is to use single tokens (unigrams).

Instead of merely counting the occurrences of words, Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) highly weights any term that occurs often in a particular
document (Muller and Guido 2017, p. 336). Mathematically, TF-IDF is the product
of two metrics tf and idf with tf being the document frequency and idf being the
inverse of the document frequency for each term (Sarkar 2016, p. 181f). To compute
TF-IDF, one has to divide the total number of documents in the corpus by tf for each
term and apply logarithmic scaling on the result. TF-IDF is implemented in the class
sklearn.feature_extraction.text.TfidfVectorizer taking the text data as input
and performing bag of words as well as the TF-IDF transformation on it (Muller and
Guido 2017, p. 336). Like bag of words, TF-IDF has an ngram_range parameter.

Another word vectorization model is the word2vec algorithm. The word2vec model is
a neural network—based model which learns distributed vector representations of words
(Sarkar 2016, p. 187). Word2vec is based on a skip-gram model that learns the word vector
representations which are good at predicting the nearby words (Mikolov et al. 2013, p.
3112). The word2vec model outperforms other approaches in finding the closest entities
in a sentence with an accuracy of 72% (for the definition of accuracy cf. section 3.4).
However, this score is only achieved with a huge amount of training data (Mikolov et al.
2013, p. 3117). Furthermore, the choice of the training algorithm and the hyper-parameter
selection heavily depends on the specific task and has to be explored individually by
parameter tuning (Mikolov et al. 2013, p. 3118), (for parameter tuning cf. section 3.5).

Nevertheless, it is still a problem to vectorize documents with word2vec. A simple
approach is to average over all the words in the document. However, weighted averaging
of word vectors loses the ordering of the input words similar to bag of words (Le and
Mikolov 2014). This is not the case for ParagraphVector, an unsupervised algorithm
learning fixed-length feature representations from variable-length texts (Le and Mikolov
2014). ParagraphVector is based upon the word2vec model in which every paragraph and
every word is mapped onto a unique vector. The paragraph receives a paragraph token
which remembers what is missing in the current context (Le and Mikolov 2014).

p’ (predicted) | n’ (predicted)
p (actual) TP FN
n (actual) FP TN

Table 1: (Sarkar 2016, cf. p. 201): Confusion matrix for a two-class classification problem.
TP = True Positives, FP = False Positives, FN = False Negatives and TN =
True Negatives.

Le and Mikolov showed for one concrete information retrieval task how ParagraphVector
minimizes the error rate up to 32% compared to bag of words, bag of bigrams and averaging
word vectors. But again this score has so far only been achieved with a huge amount of
training data, precisely with one million queries from a database (Le and Mikolov 2014).

3.4 Evaluation of a Classifier’'s Performance

After having trained a classifier, it is interesting to estimate its performance for new,
previously unseen inputs. By splitting the present input data into a training and a test set,
it can be estimated how well the classifier is expected to predict unseen data. Evaluation
techniques analyze a classifier by comparing the labels it generates for the inputs in a
test set with the correct labels for those inputs (Bird, Klein, and Loper 2009, chap. 6.3).

There are several metrics for evaluating a classifier’s performance. Accuracy, precision,
recall and F1 score as the most common ones are presented in the following (Sarkar 2016,
p. 200).

To define these metrics, True Positives (TP), False Positives (FP), False Negatives
(FN) and True Negatives (TN) are introduced (table 1). “p” denotes the positive and “n”
the negative class. TPs are defined as the number of instances correctly predicted and
belonging to the positive class, whereas FNs are the number of instances falsely predicted
and belonging to the negative class. Accordingly, FPs are the number of instances wrongly
predicted and belonging to the positive class, whereas TNs are the number of instances
correctly predicted and belonging to the negative class (Sarkar 2016, p. 201).

The simplest metric that can be used for evaluation is accuracy. Accuracy measures
the percentage of annotated input data that has been labeled correctly by the classifier
(Bird, Klein, and Loper 2009, chap. 6.3). It is understood as the overall proportion of
correct predictions of the classifier (Sarkar 2016, p. 202):

TP+TN

A - 1
Ay = TP Y FP+ FN + TN (1)

A different measurement approach offer the metrics precision and recall. Precision
indicates how many of the identified items are relevant (Bird, Klein, and Loper 2009,
chap. 6.3). It is defined as the fraction of the correct predictions made by the classifier
out of all predictions (Sarkar 2016, p. 203):

TP
Precision = m (2)

Recall indicates how many of the relevant items were identified (Bird, Klein, and Loper
2009, chap. 6.3). It is defined as the fraction of correctly predicted instances (Sarkar 2016,
p. 203):

TP

Recall = m (3)

There is a trade-off between precision and recall: If one metric is optimized, the other has
to be slightly neglected (Muller and Guido 2017, p. 282f). Therefore, the F1 score, i.e.
the harmonic mean of precision and recall, can be used as an alternative metric:

. Precision -
1o 2 - Precision - Recall

(4)

Precision + Recall

It strongly depends on the application’s necessities which evaluation metric to use.

3.5 Cross-Validated Grid Search

To improve a classifier’s performance, its parameters can be tuned. For parameter tuning,
grid search with cross-validation is a common choice (Muller and Guido 2017, p. 265). In a
grid search, different parameter combinations are probed over a grid. The performance of
each parameter combination is evaluated by cross-validation (Pedregosa et al. 2011). For
cross-validation, the data set is split into S equally sized folds. A proportion (S —1)/S is
used for training and the remaining proportion 1/S for testing. This procedure is repeated
for all S possible choices (Bishop 2006, p. 32f). Cross-validated grid search is implemented
in the class sklearn.model_selection.GridSearchCV.

3.6 SpaCy’s DependencyParser and EntityRecognizer

The implementations of NER and RE in this bachelor thesis interact with the spaCy NLP
library. In the following, spaCy’s classes DependencyParser and EntityRecognizer are
discussed.

DependencyParser annotates syntactic dependencies on natural language texts. Ac-
cording to spaCy’s founder Matthew Honnibal, the class is based on a transition-based
parsing system'?. In such system, the parser consists of a state which can be manipulated
by a set of actions (Honnibal, Goldberg, and Johnson 2013, p. 164). A particular set of
states produces a transition-system.

Honnibal focuses on the monotonic arc-eager transition system in which four parsing
actions are distinguished: Shift, Right-Arc, Left-Arc and Reduce. Shift pops the first item
on the buffer and pushes it on the stack. Right-Arc additionally adds a dependency arc
from the top of the stack to the first item on the buffer. Left-Arc adds a dependency
arc from the first item on the buffer to the top of the stack. Finally, reduce pops all
items from the top of the stack. The output is supposed to be a well-formed parse tree.
Given the monotonicity of the system, “once an action has been performed, subsequent
actions must be consistent with it.”(Honnibal, Goldberg, and Johnson 2013, p. 164) If a
wrong decision is made, the parser cannot recover from an incorrect head assignment. In

M https: //explosion.ai/blog/how-spacy-works

10

a non-monotonic arc-eager system, however, a previous decision can be undone because a
subsequent move can overwrite an attachment made by the first (Honnibal, Goldberg,
and Johnson 2013, p. 169).

EntityRecognizer annotates NEs on natural language texts. The foundations'® of this
class are the previously discussed transition-based dependency parsing and Long short-term
memory (LSTM), a type of recurrent neural network. In the class EntityRecognizer,
these two concepts are combined in a stack LSTM to incrementally construct chunks of
the input (Lample et al. 2016). According to Lample, LSTMs are a reasonable choice
for NLP tasks because in natural language, important information is position dependent.
Therefore LSTMs are a better choice for modeling the relationship between words and
their characters than, for example, convolutional networks, although LSTMs have a
representation biased towards their most recent inputs (Lample et al. 2016).

In a stack LSTM, the input layers are vector representations of individual words.
To get this input, pretrained word embeddings, precisely skip-n-grams as a variation of
word2vec, have been used (cf. section 3.3). In the chunking algorithm, transition-based
dependency parsing is employed. For presenting labeled chunks, a bidirectional LSTM
is used. The output is a single vector representation for each labeled, generated chunk,
whereas the length of the chunk is irrelevant (Lample et al. 2016). All things considered,
stack LSTMs outperform other approaches in sequence labeling, even those which use
external resources (Lample et al. 2016).

3.7 Methods for Relation Extraction

The goal of RE is to extract relations between NEs. The main question can be framed as:
What relations exist between two NEs? In fact, RE targets a very difficult problem: A pair
of NEs can have more than only one relation (Konstantinova 2014, p. 22) and language
ambiguity is a major obstacle (Konstantinova 2014, p. 24). Currently, the methods used
for RE can be differentiated into three categories: knowledge-based methods, supervised
methods and self-supervised methods (Konstantinova 2014, p. 17). Due to its complexity,
the latter was not taken into consideration for this bachelor thesis.

Knowledge-based methods are used for domain-specific tasks in which a fixed set of
relations has to be extracted. Usually these methods are based on pattern-matching rules.
Annotations and training are not necessary. However, knowledge-based methods usually
do not generalize to other data sets and demand much manual labor (Konstantinova 2014,
p. 18).

Supervised methods automatically learn how to extract relations and therefore easily
adapt to other data sets. Supervised relation extraction can be performed with kernel
methods, logistic regression or conditional random fields (Konstantinova 2014, p. 18). The
drawback of supervised methods is that a large amount of training data is needed and
that it might take a lot of manual labor to create the annotated corpus required to train
the model (Konstantinova 2014, p. 18).

All things considered, it has to be dealt with a trade-off between manual labor

Shttps://spacy.io/usage/resources#videos

11

for creating appropriate training data and having a system that learns automatically
when performing RE on a data set. Knowledge-based methods optimize for the former,
supervised methods for the latter.

Once a decision for a method has been made, another challenge is to find adequate
features (cf. section 3.3). Different approaches to RE have shown two interesting features.
First, if focusing on relation-independent lexico-syntactic patterns, it is promising to focus
on the verb, because “95% of all relations in English can be described by only eight general
patterns” (Konstantinova 2014, p. 20), such as triples of the form (N E;,verb, NEs) (cf.
section 3.1). A second promising feature is to use the dependency parser (cf. section 3.6)
and extract the path in the dependency parse tree between two NEs because in English,
the relations are often found in between two NEs (Konstantinova 2014, p. 21).

4 Implementation

In this bachelor thesis, named entity recognition (NER) and relation extraction (RE) are
implemented in two sequential pipelines. In accordance with the information extraction
architecture, NER is the step before RE (cf. section 3.1). The initial input for the NER
pipeline is a single iconographic description (design) from the CNT database (figure 4).
After passing the NER pipeline, the named entities (NEs) in the design are assigned to
one of four labels: PERSON, ANIMAL, PLANT or OBJECT. In this bachelor thesis, only
the PERSONS, i.e. the subjects, and the OBJECTS, i.e. the objects, are relevant for the
RE pipeline. This pipeline uses the design together with the NEs labeled as PERSONs
and OBJECTs as input to predict relations between subjects and objects. Therefore the
output of the NER pipeline is transformed into a list of (design, subject, object)-triples as
input for the RE pipeline. In this step, the cross product of all NEs labeled as PERSONs
or OBJECTs is taken and only the (PERSON, OBJECT) pairs are considered. After
passing the RE pipeline, one or multiple (subject, relation, object)-triples are extracted
from the initial input design.
For a better understanding of the data flow, consider the following example design:

“Apollo seated left on omphalos, holding bow in right hand.”

After passing the NER pipeline, “Apollo” is labeled as PERSON and “omphalos” and
“bow” are each labeled as OBJECT:

“'Apollo PERSON seated left on omphalos OBJECT | holding bow OBJECT
in right hand.”

12

CNT database

_ “Apollo seated left on omphalos,
design | holding bow in right hand.”

NER

“Apollo PERSON seated left on

labeled _
omphalos OBJECT, holding bow

design e
OBJECT in right hand.”
\/
X
[(“Apollo seated left on omphalos,
[(“design”, holding bow in right hand.”,
“subj”, “Apollo”, “omphalos”),

“obj”), ...] (“Apollo seated left on omphalos,
holding bow in right hand.”,
“Apollo”, “bow")]

Y

RE

[(subj1, rel1, obj1), | [(“Apollo”, “seated_on”,

(subj2, rel2, obj2), | “omphalos”),
] (“Apollo”, “holding”, “bow”)]

list of triples

Figure 4: Named Entity Recognition and Relation Extraction are implemented in two
sequential pipelines.

13

Each (PERSON,OBJECT) pair is presented as a candidate for the following RE pipeline:

[(“Apollo seated left on omphalos, holding bow in right hand.”,
“Apollo”, “omphalos”),

(“Apollo seated left on omphalos, holding bow in right hand.”,
“Apollo”, “bow”)].

After passing the RE pipeline, the output ideally looks like this:
[(“Apollo”, “seated on”, “omphalos”), (“Apollo”, “holding”, “bow”)].

“seated on” and “holding” are the relations that exist between the subject “Apollo” and
the objects “omphalos” and “bow”.

After this high-level overview, the concept and workflow of the two inner pipelines are
explained in more details in section 4.1 and section 4.2.

4.1 Named Entity Recognition

To identify the different NE types in the CNT designs, NER is performed by employing
spaCy’s class EntityRecognizer (cf. section 3.6). The first implementation step was
to perform NER on persons only as proof of principle. Therefore a list of persons was
created manually by using the key words given in the relational database and by screening
the English designs for synonyms, homonyms, alternative spellings and spelling errors of
these persons’ names. This list serves as input for the NER workflow (figure 5). In step 1,

list of persons

1
manual
2 HER optimization
3
GT- non GT-

matching matching -
predictions predictions

Figure 5: In the Named Entity Recognition workflow, revising the ground truth (GT)-
matching and non ground truth (GT)-matching predictions helps to improve
the input for the Named Entity recognizer.

the NE recognizer gets the list of persons which is used for annotating the CNT designs

automatically for the training process. Each automatically generated annotation consists
of a list of (start, end, label)-triples where start denotes the position of the first character

14

in the string of the NE, end denotes the position of the last character and label is the
corresponding label. For

“Apollo seated left on omphalos.”
the corresponding annotations are
[(0, 6, PERSON), (22, 30, OBJECT)].

Before training, the data has to be split into a train and a test set (cf. section 3.4) to
evaluate the NE recognizer’s performance. Two different types of train-test splits have
been employed: a random split implemented with sklearn.model_selection.train-
_test_split and a name-disjoint split yielding disjoint sets of persons in the training
and in the test set. In the second case, the NE recognizer receives test data that contains
names of persons unseen in the training process. The idea of this name-disjoint split is to
investigate if the NE recognizer is able to predict the correct label for new, unseen names
of persons.

In step 2 of the NER workflow, the NE recognizer is trained on the train set with
three pipeline iterations (figure 5). Afterwards, the trained NE recognizer receives the
unseen, unlabeled test set and predicts the corresponding labels for the recognized NEs
(cf. section 3.2).

After training, the NE recognizer’s output is distinguished in ground truth (GT)-
matching and non ground truth (GT)-matching predictions in step 3 (figure 5). Predictions
match the ground truth if the predicted labels equal the ground truth annotations and are
non GT-matching otherwise. In step 4, the list of persons can be improved by reviewing
the predictions manually (figure 5).

By looping over the NER workflow iteratively, the list of persons was successively
improved. The evaluation of this optimization process is discussed in section 6.1. Once
the performance of the NE recognizer was satisfying, additional lists including objects,
animals and plants were created. Together with the list of persons they were used as input
for the NE recognizer which then was trained on the four labels PERSON, OBJECT,
ANIMAL and PLANT in order to predict those labels for unseen data. Again, the so
extended NER workflow was improved in iterative loops (figure 5).

The NE recognizer’s performance is evaluated by using the metrics accuracy, precision
and recall (cf. section 3.4). As spaCy does not offer a customized function to evaluate
accuracy, an accuracy function has been implemented. Accuracy is defined as the fraction
of entirely correctly predicted designs out of all n predictions:

1 n
Accuracy = o E 6<ytrue,i7ypred,i) (5)
i=1

with

0 otherwise

6<x,y>={1 o=y (6)

Accuracy is an adequate metric to measure the NE recognizer’s performance in the NER
pipeline. However, it is a tough criterion, as a prediction is labeled as correct if and

15

only if all NEs are labeled correctly. If, for example, a design contains five NEs and only
one receives a wrong label or is not labeled at all, the design is labeled incorrectly in
total. Precision and recall, however, are defined for each NE individually. Therefore these
metrics are additionally used for evaluation (cf. section 3.4).

Scikit learn offers the functions sklearn.metrics.recall_score(y_true, y_pred)
and sklearn.metrics.precision_score(y_true, y_pred). However, these functions
are restricted to the binary classification problem (Pedregosa et al. 2011). For the NE
recognizer, a precision-recall function has been implemented. Precision is defined as the
cardinality of the intersection of the set of predicted NEs and the set of ground truth
NEs divided by the cardinality of the set of predicted NEs:

|prediction N groundtruth|

(7)

Precision = —
|prediction)|

Recall is defined as the cardinality of the intersection of the set of predicted NEs and the
set of ground truth NEs divided by the cardinality of the set of ground truth NEs:

|prediction N groundtruth|

Recall = (8)

|groundtruth|

4.2 Relation Extraction

RE is the task of extracting relations between NEs and a challenging trade-off is the one
between manual labor and automatically learning systems (cf. section 3.7). Given the
CNT data with 3.628 designs and its relations not being annotated, on the one hand
the data set is too small for a supervised learning approach and it is impracticable to
manually annotate the whole data set. On the other hand, a knowledge-based approach
using patterns and rules does not generalize. So how can relations be extracted from the
CNT designs?

By rephrasing the problem, this bachelor thesis proposes a different approach to RE.
If the types of relations in the data set is known, instead of asking what relations exist
between a pair of NEs, it can be asked if a pair of NEs has a certain relation or not.
This way, the problem can be understood as a multiclass classification problem which can
be solved by employing classifiers like logistic regression or SVMs (cf. section 3.2). This
has the advantage that creating training data is comparatively easy because only the
relations have to be annotated. However, new relations cannot be learned as the number
of relations is as fixed as the labels in the NER pipeline.

To produce a small, but functional application, the focus in this bachelor thesis is
exclusively on (N E1, a, N Ey)-triples with N E; being the iconographic subject on the
coin labeled as PERSON, « being a relation represented by a verb and with N Es being
the object on the coin labeled as OBJECT. Thus the considered designs are only those
containing at least one PERSON and one OBJECT label.

Each design in the CNT data has been annotated manually analogous to the output of
the NER pipeline with a list of (PERSON, relation, OBJECT)-triples if a desired relation
existed between them (cf. figure 4). The relations in

16

relation semantic cluster

vh))

holding “holding”, “carrying” (garment), “brandishing’
(spear), “shouldering” (rudder), “playing” (lyre,
aulos), “raising” (shield), “cradling” (torch)

wearing “wearing”, “covered with” (lion-skin)

resting on “resting on”, “leaning on”

seated on “seated on”, “seated in”

standing “standing in” (biga), “driving” (biga), “standing
on” (galley)

drawing “drawing” (arrow)

stepping on “stepping on” (helmet)

grasping “scooping” (gold), “reach out for” (person), “pluck-
ing” (chiton)

lying “lying on”

hurling “hurling” (thunderbolt)

no_existing relation

Table 2: The eleven relations identified between (PERSON, OBJECT) pairs in the CNT
designs represent semantic clusters. no_existing relation is used for designs
which lack any such relation.

“Apollo seated left on omphalos, holding bow in right hand.”
are seated on and holding, thus the corresponding annotations are
[(“Apollo”; “seated _on”, “omphalos”), (“Apollo”, “holding”, “bow”)].

In total, eleven relations were identified in the CNT data set during the annotation
process. Each relation class comprises a number of semantically similar relations (table 2).

In some cases, it was useful to annotate more relations than only those explicitly
represented by verbs. For

“Nike in biga, right.”
the corresponding annotation is
[(“Nike”, “standing”, “biga”)]

because “standing” is the relation used in all other similar designs depicting Nike in a
biga and can thus be annotated although not being explicitly mentioned. Designs which
do not contain any of the desired relations are annotated as a “no_existing relation”. For

“Bust of Dionysus right.”

the corresponding annotation is an empty list [|.
The CNT designs together with the PERSONs and OBJECTs detected in the NER
pipeline serve as input for the RE workflow (figure 6). In step 1, the (design, subject,

17

designs

1 | annotation

annotated
relations

\/

2 feature
extraction

manual

features optimization

I

TN TP FN|FpP

Figure 6: In the Relation Extraction workflow, annotated relations are transformed into
features for training the Relation Extraction classifiers. TN = True Negatives,
TP = True Positives, FN = False Negatives and FP = False Positives.

object)-triples are annotated manually with relations between (PERSON, OBJECT)
pairs. In step 2 of the RE workflow, features are extracted from the annotated relations
(figure 6). These features serve as input for the training process because before training a
classifier, adequate features have to be found (cf. section 3.3). To use a vectorizer, the
designs have to be preprocessed. Hence preprocessing features and vectorizers have to be
combined. Word vectorization models like word2vec and doc2vec, on the contrary, do not
need an additional vectorizer (cf. section 3.3). In the following, the selected features are
presented:

Doc2Str is a simple feature that applies a vectorizer such as TF-IDF to the whole
design (cf. section 3.3). This feature does not use the NE labels in the designs and is
therefore expected to perform poorly.

Path2Str To create a better feature, it seemed promising to extract the path on the parse
tree between two NEs (cf. section 3.7). The path is extracted in a path function which
determines the least common ancestor of the two nodes subject and object and returns the
whole path between them if existing. Path2Str is augmented with two syntactic-based

18

features as optional parameters: part of speech (PoS)-tags (cf. section 3.1) and dependency
labels which show the syntactic dependencies between words in a sentence. Both are
accessible with spaCy’s DependencyParser after having generated the parse tree (cf.
section 3.6). The parse tree including PoS-tags and dependency labels can be depicted
with the visualizer displaCy!©.

Verb2Str uses the PoS-tag “verb” on the path of the parse tree between two NEs.
Whenever the PoS-tag of a word is a verb, it is added to the feature.

AveragedPath2Vec implements word2vec and additionaly averages over all words on
the path (cf. section 3.3). It employs spaCy’s vector class'”.

AveragedRest2Vec is the complementary input to word2vec. Not the path of the parse
tree between two NEs is extracted, but the rest of the design except for the path.

Doc2Vec implements the word vectorization model doc2vec by interacting with the
gensim library'® (cf. section 3.3).

In step 3 of the RE workflow, the extracted features are used as input for training
the RE classifiers (figure 6). Three different classifiers were probed: SVMs both with a
linear and a radial basis function (rbf) kernel implemented with sklearn.svm.SVC and
logistic regression implemented with sklearn.linear_model.LogisticRegression (cf.
section 3.2). These classifiers were trained with all possible feature combinations (for
evaluation see section 6.2).

To find the best feature-classifier-combination, a cross-validated grid search with five
repetitions was performed and the classifiers’ performances were evaluated (cf. section 3.5).
The most adequate metric to evaluate the classifiers’ performances seems to be the F1
score (cf. section 3.4). Accuracy is not very adequate because a prediction of a design
is labeled as correct if and only if all relations are labeled correctly. If, for example, a
design contains five relations and only one receives a wrong label, the design is labeled
incorrectly in total. Therefore precision and recall, and hence F1 score as the harmonic
mean of the two, offer a more substantial metric for the RE pipeline (cf. section 3.4).

After having determined the best feature-classifier-combination, the classifier’s output
is split in True Positives (TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN) in step 4 of the RE workflow (figure 6). The goal of this distinction is to
analyze the FPs for further optimization.

True Positives are those predicted relations which are present in the ground truth
annotations:

TP = prediction N groundtruth 9)

https: //demos.explosion.ai/displacy/
"https://spacy.io/api/vectors
8https: //radimrehurek.com/gensim /models/doc2vec.html

19

False Positives are those predicted relations which are not present in the ground truth
annotations:
FP = prediction \ groundtruth (10)

False Negatives are those relations present in the ground truth annotations, but not
predicted:
FN = groundtruth \ prediction (11)

True Negatives (TN) are those relations which are not predicted and not present in the
ground truth annotations. As TNs can only be detected manually, they were not in focus.

In step 5 of the RE workflow, the annotated relations are optimized (figure 6). By
analyzing the FPs, erroneous or missing ground truth annotations have been corrected
manually. The annotated relations and hence the classifier’s performance were successively
improved by looping over the RE workflow iteratively.

5 Lessons Learned

After having discussed the concepts and the workflow of the named entity recognition
(NER) and relation extraction (RE) pipelines in the previous chapter, this chapter focuses
on the problems that arouse during implementation. Solutions to these problems are
presented and the costs of these solutions in terms of computation time and manual labor
are estimated.

Preprocessing Two problems were solved by preprocessing the CNT designs. The first
problem was abbreviating “right” with “r.” and “left” with “l.”. These abbreviations are
difficult because the period is usually interpreted as the end of a sentence by NLP tools.
Therefore the abbreviations were eliminated. For example,

“Apollo seated 1. on omphalos, holding bow in r. hand.”
became after preprocessing
“Apollo seated left on omphalos, holding bow in right hand.”

The second issue were upper and lower cases in the designs. If the NE recognizer in the
NER pipeline was trained on words with lower cases only, these words were not recognized
when written capitalized. Therefore both lower and upper case representations of objects,
animals and plants were provided as input to the NE recognizer. For persons, the upper
case representation was sufficient.

Annotations for NER pipeline To train the NE recognizer in the NER pipeline, the
designs had to be annotated. Therefore all names in the designs were compiled in a list of
persons (cf. section 4.1). This list was created manually by extracting the persons’ names
from the key words stored in the relational database and by screening the English designs
for synonyms, homonyms, alternative spellings and spelling errors of these names. The
annotation process corresponds to step 1 in the NER workflow (figure 7). At a later stage,

20

list of persons
ll

Figure 7: First step of the Named Entity Recognition workflow depicted in figure 5.

additional lists of objects, animals and plants were compiled. Words such as “centaur”
required individual decisions because they could have been labeled with both PERSON
and ANIMAL. Compiling all four lists took about two days of work, i.e. 16 hours of

manual labor in total.
/“‘\

GT- non GT-
matching matching T
predictions predictions

Figure 8: Third step of the Named Entity Recognition workflow depicted in figure 5.

Train-Test Split After the first run of the NER pipeline with the list of persons as input,
random new names like “Joe Otto” were not correctly labeled. This was problematic
because the application was supposed to generalize to other data sets. To investigate if
the NE recognizer learns to predict new names, a name-disjoint train-test split yielding
disjoint sets of persons was implemented (cf. section 4.1). After the name-disjoint split,
the NE recognizer receives test data that contains names of persons unseen in the training
process. The problem corresponds to step 3 in the NER workflow because by considering
the ground truth (GT)-matching and non ground truth (GT)-matching predictions, the
necessity for a name-disjoint split became clear (figure 8).

Relation Extraction A major challenge of this bachelor thesis was to figure out how
relations could be extracted at all from the relatively small data set of CNT designs.
This issue was coped with by rephrasing the problem and treating RE as a multiclass
classification problem (for further discussion cf. section 4.2).

Annotations for RE pipeline One advantage of understanding RE as a multiclass
classification problem was that the designs had to be only annotated with relations (cf.
section 4.2). This approach implied two problems concerning step 1 in the RE workflow
(figure 9). First, it was unclear which relations existed between (PERSON, OBJECT)

pairs. Second, the annotation process had to be handled efficiently. The former issue was

21

designs

i

1 | annotation

Figure 9: First step in the Relation Extraction workflow depicted in figure 6.

solved during the annotation process itself. By clustering semantically similar relations,
eleven relations were identified (cf. section 4.2). The latter issue was solved by making
use of the PERSONs and OBJECTS recognized in the NER pipeline. This way only the
relations had to be annotated. For

“Apollo seated left on omphalos, holding bow in right hand.”,
the annotation schema looked like this:
[(“ApOHO”, 13 77’ “Ompha,los”)’ (HApOllO”, 13 77’ “'bowﬂ)].

To identify and annotate all eleven relations existing between (PERSON, OBJECT) pairs
in the CNT designs took about four days of work, i.e. 32 hours of manual labor in total
(cf. table 2).

annotated
relations

2 feature
extraction

Figure 10: Second step in the Relation Extraction workflow depicted in figure 6.

Feature extraction As feature extraction is “both art and science” (Sarkar 2016, p. 178),
it was challenging to find adequate features for RE. The solution was a trial and error
approach: All features that seemed promising and as many as possible were tested (cf.
section 4.2). The problem corresponds to step 2 in the RE workflow (figure 10).

Best Classifier-Feature Combination Given the broad variety of classifier-feature-
combinations, the best combination had to be found. Therefore the different parameter
combinations were probed in a cross-validated grid search with five iterations (cf. sec-
tion 4.2). The cost of computation time aggregates to about five hours for one grid search
because each iteration took approximately an hour on an Intel Core i3-2350M CPU with
2.30 GHz x 4.

22

6 Measurement Results and Discussion

6.1 Named Entity Recognition

To train the NE recognizer in the NER pipeline, the CN'T designs have been annotated
by using lists of persons, objects, animals and plants. The four labels differ substantially
in size (figure 11): While there are almost as many ANIMALs (1.379) as PLANTs (1.405),
the label PERSON is used roughly twice as often (2.844 times). The label OBJECT makes
the largest difference: It occurs 7.201 times in the designs (figure 11). In comparison,
there exist 166 unique OBJECTs, 163 unique PERSONSs, 54 unique ANIMALSs and 28
unique PLANTS in the lists. These unique terms occur with different frequencies (figure
11). The most frequent OBJECTS are bust (449 times), patera and cuirass (329 times
each). The most frequent PERSONs are Apollo (192 times), Athena (171 times) and Nike
(137 times). The most frequent PLANTS are branch (184 times), grain (170 times) and
ears (132 times). Last but not least, the most frequent ANIMALSs are lion (193 times),
serpent (166 times) and horse (87 times).

OBJECT

PERSON

Label

PLANT

ANIMAL

0 1000 2000 3000 4000 5000 6000 7000
Count

Figure 11: The number of OBJECTs is substantially higher than for any other label.
Each color block corresponds to a unique term which occurs with different
frequencies. For example, the most frequent PERSON is Apollo.

One reason for the large amount of OBJECTs might be that numismatic researchers
are usually interested in what persons are depicted with which objects because objects
often serve as attributes to identify the persons. The person Poseidon, for example, is
usually shown with the object trident. Moreover, the number of persons who are depicted
on an ancient coin is rather small.

Before training the NE recognizer, a random train-test split and a name-disjoint
train-test split yielding disjoint sets of persons have been performed (cf. section 4.1). To

23

Split
I disjoint
I random

Precision Recall Accuracy

Figure 12: The Named Entity recognizer performs better with a random than with a
name-disjoint train-test split on the test data.

evaluate the NE recognizer’s performance after training, the metrics accuracy, precision
and recall were employed. For all three metrics, the scores are better for the random split
than for the name-disjoint split (figure 12): The random split achieves an accuracy of
88% on the test data, a recall of 97% and a precision of 98%, whereas the name-disjoint
split achieves an accuracy of 77% on the test data, a recall of 88% and a precision of
89% (figure 12). The size of the test set was 25% of the whole data set. One reason for
the better performance of the random split might be that the name-disjoint split is more
demanding because the NE recognizer has to correctly predict the label of unseen person
names. In the case of the random split both the train and the test set may, for example,
contain “Apollo” and hence predicting the label is easier for a name already seen in the
training data. All things considered, the NE recognizer performs very well, even with the
more challenging name-disjoint train-test split. Nevertheless, the NE recognizer’s output
was reviewed after the training process to improve the ground truth annotations.

Therefore spaCy’s visualizer displaCy was used to visualize ground truth-matching
and non ground truth-matching predictions (figure 13). By analyzing the predictions, new
persons and objects were found and added manually to the according list. For example,
groups of persons like “nymphes” or “satyrs” were recognized, although not being listed in
the list of persons used to automatically generate the ground truth annotations. This way
the NE recognizer’s performance was improved iteratively.

However, there exist also examples of missing predictions. In

“ Statue OBJECT of nude ‘Marsyas PERSON standing right, right foot
stepping forward, holding wineskin over left shoulder, raising right arm.”,

“statue” is correctly labeled as OBJECT, but “wineskin” is not recognized (figure 13,
design 4). If “wineskin” was a True Negative, it would not be predicted and not be present
in the ground truth annotations (cf. section 3.4). This error could be eliminated by adding
the word to the list of objects manually. Another mistake occurred in the following design:

“ Trophy OBJECT on shaft, comprising on a Corinthian helmet OBJECT
to left, shield OBJECT from front [...| .”

24

Nude bearded ' Heracles PERSON standing right, strangling with both hands the attacking Nemean lion ANIMAL to

left; club oBJECT in exergue.

Eros PERSON on lion ANIMAL stepping right.

Veiled ' Demeter PERSON seated leftona cista oBJECT |, from whicha serpent ANIMAL entwines, wearing
stephane oBJECT |, holdinga poppy PLANT betweento grain PLANT ears PLANT inright hand and a torch
OBJECT in left arm. Border of dots.

Statue oBJEcT of nude | Marsyas PERSON standing right, right foot stepping forward, holding wineskin over left
shoulder, raising right arm.

Trophy oBJECT on shaft, comprising of a Corinthian helmet oBJecT to left, shield oBJEcT from front and a

Figure 13: Designs labeled in accordance with the ground truth annotations are visualized
with displaCy. Each color in the visualization corresponds to a label: Purple
represents PERSON;, green represents OBJECT, yellow represents ANIMAL
and grey represents PLANT.

“Trophy”, “helmet” and “shield” are correctly labeled as OBJECTSs, but “shaft” is not
recognized (cf. figure 13, design 5). If “shaft” was a False Negative, it would be present in
the ground truth annotations but not predicted (cf. section 3.4). This corresponds to an
error of the NE recognizer. By additional loops over the NER workflow, True Negatives
could be detected manually to achieve further performance improvements (cf. figure 5).

To probe generalizability, the NER pipeline was run on two external data sets from
Online Coins of the Roman Empire (OCRE) and Coinage of the Roman Republic Online
(CRRO)' based on the annotations of the CNT data with 3.628 designs, with a random
train-test split and without any further adaptations. On the CRRO data set with 1.691
designs, an accuracy of 75%, a recall of 89% and a precision of 96% was achieved. On
the OCRE data set with around 14.000 designs, an accuracy of 90%, a recall of 96% and
a precision of 99% was achieved. These results have been achieved without revising the
True Negatives and without any additional iterations over the NER workflow (cf. figure
5). Therewith it is shown that the NER implementation generalizes to other data sets
and seems to improve if being used with larger data sets.

6.2 Relation Extraction

To train the classifiers in the RE pipeline, the CNT designs have been annotated with
(PERSON, relation, OBJECT)-triples (cf. section 4.2). After taking the cross product of
all NEs labeled as PERSONs or OBJECTS, the number of (PERSON, OBJECT) pairs is
7.589 in total. The label “no existing relation” is used if there doesn’t exist a relation
between a (PERSON, OBJECT) pair. This label occurs 3.628 times (figure 14). It is the
most frequent relation because of the cross product which takes (PERSON, OBJECT)

http://numismatics.org/crro/

25

pairs not having any relation into account. An example of a “no_ existing relation” is:
“Bust of Dionysus right.”

In total, eleven relations have been identified in the annotation process. The other ten
relations occur with different frequencies (figure 14): The second most common relations

no_existing_relation r
holding

wearing -
resting_on -l
seated_on A
standing #
drawing i
stepping_on
grasping -
lying -
hurling -
0 500 1000 1500 2000 2500 3000 3500

(PERSON, OBJECT) pairs

Relation

Figure 14: Eleven relations have been identified in the CNT designs. Most (PERSON,
OBJECT) pairs have no relation at all. “stepping _on” and “grasping” appear
eight times each, “lying” and “hurling” once each.

are “holding” appearing 2.022 times and “wearing” appearing 1.523 times. In a vast
distance follows ‘“resting on” appearing 219 times. Less than a hundred but more than
ten times appear “seated on” (75 times), “standing” (63 times) and “drawing” (41 times).
Less than ten times and therefore almost negligible are “stepping on” and “grasping” (8
times each) as well as “lying” and “hurling” (once each). The high frequency of “holding”
and “wearing” is a property of the designs: Usually persons depicted on an ancient coin
are described by what they wear and what the hold, hence these are common relations
between persons and objects in numismatics.

These annotations were required for training the three classifiers in the RE pipeline.
Before training, a random train-test split was performed. Then all classifiers were trained
with all feature combinations (cf. section 4.2). By performing a cross-validated grid search
after training, the best feature-classifier-combinations were identified (cf. section 3.5).
The grid search was repeated five times with each repetition taking approximately one
hour to run. In total, one cross-validated grid search took about five hours time on an
Intel Core i3-2350M CPU with 2.30 GHz x 4.

The top five performers with an F1 score of 88% employ a combination of the classifiers
SVM with linear kernel (SVC(“linear”)) and logistic regression (LR()), Path2Str and bag

26

Metric
B Precision I Recall B F1 score

(LR(), (Path2Str(pos), CV(ngram=(1,3))
(SVC("linear"), (Path2Str(), CV(ngram=(1,2))
(SVC("linear"), (Path2Str(pos), CV(ngram=(1,3))

) ()

) ()

) ()

(SVC("linear"), (Path2Str(pos), CV(ngram=(1,2))))
(SVC("linear"), (Path2Str(), CV(ngram=(1,3))))

(LR(), (Path2Str(pos), CV(ngram=(1,2))))

(LR(), (Path2Str(pos, dep), CV(ngram=(1,3))))

(LR(), (Path2str(), CV(ngram=(1,3))))

(LR(), (Path2Str(), CV(ngram=(1,2))))

(SVC("linear"), (Path2Str(pos, dep), CV(ngram=(1,2))))

0.00 0.25 0.50 0.75

Figure 15: Classifier ranking according to F1 score. The best results for F1 score
(88%), precision (92%) and recall (84%) are achieved with feature-classifier-
combinations of Path2Str, bag of words with 2- or 3-grams (CV(ngram=(1,2))
or CV(ngram=(1,3))) and logistic regression (LR()) or SVM with a linear
kernel (SVC(“linear”)). PoS-tags and dependency labels have little influence
on the scores. The performance of all feature-classifier-combinations is shown
in figure 16.

of words with 2- or 3-grams (CV(ngram=(1,2)) or CV(ngram=(1,3))) (figure 15). It seems
better to use 2- or 3-grams instead of the default unigrams (cf. section 3.3). However, it
does not make a noticeable difference whether 2- or 3-grams are employed (figure 15).
Comparing the F1 score to precision and recall also shows the little influence PoS-tags
and dependency labels have on the scores (figure 15).

The RE performance is limited by the NER performance. The NER pipeline performs
with an accuracy of 88%, a recall of 97% and a precision of 98% (figure 12). The best
feature-classifier-combination of the RE pipeline achieves a recall of 84% and a precision
of 93% which leads to an F1 score of 88% (figure 15).

The classifiers LR() (figure 16, top) and SVC(“linear”) (figure 16, middle) show sim-
ilar behavior in stark contrast to the classifier SVM with radial basis function kernel
(SVC(“rbf”)) (figure 16, bottom).

First, the classifier plots of SVC(“linear”) and LR() are discussed. Precision and recall
of both SVC(“linear”) and LR() are clustered into four groups (figure 16, top and middle).
The worst feature is Doc2Vec. As Doc2Vec is known to only achieve good scores for a

27

Precision

Precision

Precision

Figure

classifier = LR()

1.0 Feature
‘ (Path2Str(pos), CV(ngram=(1,3)))
0.8 - (Path2Str(pos, dep), Tfidf(ngram=(1,3)))
(Path2Str(dep), Tfidf(ngram=(1,2)))
0.6 4 % (Path2Str(pos, dep), Tfidf())
(Path2Str(pos, dep), Tfidf(ngram=(1,2)))
0.4 - (Path2Str(dep), Tfidf(ngram=(1,3)))
(Path2Str(dep), Tfidf())
0.2 - (Path2Str(pos), Tfidf())
(Path2str(), CV())
(Path2sStr(), Tfldf())
0.0 ' ' ' (PachStr(dep cVv())
® (Path2Str(pos), CV())
classifier = SVC("linear") o (Path2Str(), Tfldf(ngram (1,3)))
* (Path2Str(pos), Tfidf(ngram=(1,2)))
1.0 A (Path2Str(pos), Tfidf(ngram=(1,3)))
' ® (Path2Str(pos, dep), CV())
0.8 A) o (Path2Str(), Tfidf(ngram=(1,2)))
A * AveragedPath2Vec()
0.6 - oy \ A (Doc2str(), CV()
® (Path2Str(pos, dep), CV(ngram=(1,3)))
0.4 e (Path2Str(dep), CV(ngram=(1,3)))
* (Path2Str(), CV(ngram=(1,3)))
0.2 - A (Path2str(), CV(ngram=(1,2)))
® (Path2Str(dep), CV(ngram=(1,2)))
0.0 : : : o (Path2Str(pos, dep), CV(ngram=(1,2)))
(Path2Str(pos), CV(ngram=(1,2)))
A Doc2Vec()
classifier = SVC("rbf") (Doc2Str(), CV(ngram=(1,3)))
(Verbs2Str(), CV(ngram=(1,3)))
1.0 °o . (Verbs2Str(), CV())
o8] ‘MY -da* (Doczstr), Thcinoram(1.3)
9) ,
’ (Doc2Str(), Tfidf())
0.6 1 (Verbs25tr(), Tfidf(ngram=(1,3)))
(Verbs2Str(), Tfidf())
0.4 - (Doc2Str(), Tfidf(ngram=(1,2)))
AveragedRest2Vec()
0.2 - (Verbs2Str(), CV(ngram=(1,2)))
(Verbs2Str(), Tfidf(ngram=(1,2)))
0.0
000 025 050 075 1.00
Recall

16: Overview of the performance of all feature-classifier-combinations. The
best combinations employ Path2Str, bag of words with 2- or 3-grams
(CV(ngram=(1,2)) or CV(ngram=(1,3))) and logistic regression (LR()) or
SVM with a linear kernel (SVC(“linear”)). The top ten performers are ranked
in figure 15.

28

large data set, probably this feature is not adequate for the CNT data set (cf. section 3.3).
Doc2Str achieving an F1 score of approximately 54% belongs to the next best group.
Providing the whole design without making use of the knowledge from the NER pipeline
results to be a weak feature for the given task (cf. section 4.2). Verb2Str (F1 score of
up to 71%) belongs to the same group as AveragedRest2Vec. The performances of the
classifiers is improved by combining the string transformers with a vectorizer using 2- or
3-grams. The best results are achieved with Path2Str combined with any vectorizer on
2- or 3-grams. Almost as good performs AveragedPath2Vec achieving an F1 score up to
82% (figure 16, top and middle).

The success of n-grams can be explained in the following way: The majority of all
relations based on verbs in English can be described with the pattern (N E7,verb, N Es).
Therefore it becomes likelier for the classifier to find these relations if n-grams are provided
as features (cf. section 3.7).

The results achieved by the SVC(“rbf”) classifier are not as good as those of the other
two classifiers: The best feature for SVC(“rbf”) is AveragedPath2Vec with an F1 score
of about 80% (figure 16, bottom). The features are not clustered into groups. Doc2Vec,
Doc2Str with any variation of TF-IDF and even some Path2Str variations score 0%. All
things considered, SVC(“rbf”) does not provide any expressive results for RE on the CNT
designs.

All discussed scores have been achieved after looping over the RE workflow twice (cf.
section 4.2). Given the output of the cross-validated grid search, RE was performed in
each loop with the best feature-classifier-combination. By analyzing the False Positives,
the annotated relations were manually improved in each loop which had also an impact
on the classifier’s performance (cf. section 4.2).

Due to the lack of annotated training data, the RE pipeline was not run on external
data sets. However, it is possible to predict relations for external designs given the RE
classifier has been trained on the CNT designs annotated with relations. Therefore it can
be said that the RE implementation generalizes to other data sets.

7 Summary and Outlook

The goal of this bachelor thesis was to take first steps in enhancing search on numismatic
descriptions. This definition of task has been adapted by employing Natural Language
Processing (NLP). The discussed approaches of named entity recognition (NER) and
relation extraction (RE) are based on supervised methods (cf. section 3.7). The developed
implementations automatically learn how to recognize named entities and extract relations
based on the Corpus Nummorum Thracorum (CNT) data set. Both implementations are
able to adapt to other data sets without any further adaptations. For the NER pipeline,
generalizability has been shown on the external data sets of Online Coins of the Roman
Empire (OCRE) and Coinage of the Roman Republic Online (CRRO) (cf. section 6.1).
Given the RE classifier is trained on the CNT designs, it is able to predict relations for
external data sets like OCRE or CRRO. Thus the RE pipeline also generalizes to other
data sets (cf. section 6.2).

29

The most sophisticated search approach so far is the Digital Iconographic Atlas of
Numismatics in Antiquity (DIANA). Being knowledge-based, it demands a high amount
of manual labor and does not generalize towards other data sets (cf. section 2.2). In
comparison, the approach developed in this thesis learns automatically because it is based
on supervised methods. Second, it is flexible because new entity types can be added
and all combinations of relations between (PERSON, OBJECT) pairs can be extracted.
Thirdly, it generalizes to other data sets because it is automated.

Given the small data set of CNT designs, understanding RE as a multiclass classification
problem is a new approach (cf. section 3.7). This approach developed in this thesis is based
on a supervised method, but by annotating relations only, it requires less manual labor
than supervised methods usually do (cf. section 4.2). However, the number of relations
is fixed, so no new relations can be extracted by the classifier. After having analyzed
different feature-classifier-combinations, it is recommended to employ Path2Str, bag of
words with 2- and 3-grams as features and logistic regression or SVM with a linear kernel
as classifiers (cf. section 6.2).

The classifiers’ performance in the NER and in the RE pipeline have been evaluated
by using the metrics accuracy, precision, recall and F1 score (cf. section 3.4). In the NER
pipeline, an accuracy of 88%, a recall of 97% and a precision of 98% has been achieved (cf.
section 6.1). In the RE pipeline, a recall of 84%, a precision of 93% and an F1 score of 88%
has been achieved (cf. section 6.2). Thus both classifiers perform very well. Nevertheless,
the metrics leave room for further optimization.

In future studies, the following enhancements and extensions could be of interest:

Performance Optimization To improve the implementation, the NE recognizer’s and
the RE classifier’s performances could be optimized.

Search Hierarchy To build a search hierarchy, the labels PERSON, OBJECT, ANIMAL
and PLANT in the NER implementation could be subdivided. For example, the
label PERSON could be distinguished in “historical person” and “deity”.

Search Hierarchy and Further Relations To build a search hierarchy and detect further
relations in the CNT designs, other relations than those already identified could be
examined, e.g. the relations of persons and body parts. For

“Apollo seated left on omphalos, holding bow in right hand.”,
it might be interesting to ask in which hand Apollo holds the bow to distinguish
“right” and “left hand”.

Further Named Entity Combinations To examine further combinations of named en-
tities in the CNT designs, the already identified relations could be employed for
pairs such as (PERSON, ANIMAL), (PERSON, PLANT) or (PERSON, PERSON).
Possibly, further relations would be detected thereby.

30

Generalizability To probe, how well the RE implementation generalizes towards other
data sets, external data sets like OCRE or CRRO could be annotated manually with
the corresponding relations. Thus the RE classifier could be trained and evaluated
on an external data set.

Acknowledgments

I would like to thank Prof. Dott.-Ing. Roberto V. Zicari for supervising this bachelor
thesis and Prof. Dr. Christian Chiarcos for co-supervision and sharing his expertise on
Natural Language Processing. I especially thank my direct instructor Dr. Karsten Tolle
for conceptualizing this thesis, for all the helpful discussions and for the always friendly
working atmosphere. I would also like to thank Sebastian Gampe for his archaeological
expertise and his assistance in annotating training data for the NER pipeline.

Appendix

A data medium containing the implementations discussed in this bachelor thesis is annexed.
The corresponding code can be found in the cnt package. The usage of this code, especially
the setup of the NER and RE pipeline, is documented in the attached Jupyter notebooks.
Furthermore, the database dump and the file for relation annotation are attached.

References

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural Language Processing with
Python — Analyzing Text with the Natural Language Toolkit. URL: http://www.nltk.
org/book/.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer.

Celesti, Antonio et al. (2017). “An Innovative Cloud-Based System for the Diachronic
Analysis in Numismatics”. In: Journal on Computing and Cultural Heritage 10.4, 23:1—
23:18. 1SSN: 1556-4673. DOI: 10.1145/3084546. URL: http://doi.acm.org/10.
1145/3084546.

Honnibal, Matthew, Yoav Goldberg, and Mark Johnson (2013). “A Non-Monotonic Arc-
Eager Transition System for Dependency Parsing”. In: Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, pp. 163-172.

Konstantinova, Natalia (2014). “Review of Relation Extraction Methods: What Is New
Out There?” In: Analysis of Images, Social Networks and Texts - Third International
Conference, AIST 2014, Yekaterinburg, Russia, April 10-12, 2014, Revised Selected
Papers, pp. 15-28. DOI: 10.1007/978-3-319-12580-0_2. URL: https://doi.org/
10.1007/978-3-319-12580-0_2.

31

Lample, Guillaume et al. (2016). “Neural Architectures for Named Entity Recognition”.
In: CoRR abs/1603.01360. arXiv: 1603.01360. URL: http://arxiv.org/abs/1603.
01360.

Le, Quoc V. and Tomas Mikolov (2014). “Distributed Representations of Sentences and
Documents”. In: CoRR abs/1405.4053. arXiv: 1405.4053. URL: http://arxiv.org/
abs/1405.4053.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and
Their Compositionality”. In: Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe, Nevada: Curran
Associates Inc., pp. 3111-3119. URL: http://dl.acm.org/citation.cfm?id=
2999792.2999959.

Muller, Andreas C. and Sarah Guido (2017). Introduction to Machine Learning with
Python. A Guide for Data Scientists. O’Reilly. Chap. 7.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825-2830.

Sarkar, Dipanjan (2016). Text Analytics with Python: A Practical Real-World Approach
to Gaining Actionable Insights from your Data. Apress. Chap. 4.

32

